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 ARTICLE INFO   ABSTRACT 
 

 

This paper reports calculation of the entropy generation due to heat transfer and fluid friction on a 
porous plate for the conjugate problem of an electrically conducting fluid in the presence of strong 
magnetic field by introducing the Hall currents. The momentum and energy balance equations are 
solved analytically, using perturbation technique. The fluid half-space is considered to be porous. The 
influences of the thermal Grashof numbers, heat generation/absorption and Hartmann number on total 
entropy generation were investigated, reported and discussed.  
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INTRODUCTION 
 
The study of magnetohydrodynamic flows with Hall currents 
has important engineering applications in problems of 
magnetohydro- dynamic generators and of Hall accelerators as 
well as in flight magnetohydrodynamics [1-3]. Unfortunately, 
the results of these investigations cannot be applied to the flow 
of ionized gases. In an ionized gas where the density is low 
and/or the magnetic field is very strong, the conductivity 
normal to the magnetic field is reduced due to the free 
spiralling of electrons and ions about the magnetic lines of 
force before severing collisions; also, a current is induced in a 
direction normal to both the electric and magnetic fields. The 
phenomena, well known in the literature, are called the Hall 
Effect [4 - 7]. Recently, several researchers have worked on 
Hall Effect of an oscillating plate in a porous medium and 
Okedoye [8] has a good review of some of this work. In the 
traditional approach in numerical computation of double 
diffusive convection problems, the quantities to be computed 
are usually temperature, pressure, concentration, mass and heat 
flow rates, but infrequently involving entropy properties. The 
contemporary trend in the field of heat transfer and thermal 
designs is the second Law (of Thermodynamics) analysis and 
its design-related concept of entropy generation minimization 
[9]. Entropy generation is associated with thermodynamic 
irreversibility, which is common in all types of heat transfer 
processes. Nag and Kumar [10] studied second Law 
optimization for convective heat transfer through a duct with 
constant heat flux.  
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In their study, they plotted the variation of entropy generation 
versus the temperature difference of the bulk and the surface 
flow, using a dusty parameter. The dissipation of energy takes 
the form of a sum of products of conjugate forces and fluxes 
associated to the problem under consideration; this was 
presented by the text of De Groot [11]. Entropy generation in 
Magneto Hydro Dynamic (MHD) flow of uniformly stretched 
vertical permeable surface in the presence of heat 
generation/absorption and chemical reaction was studied and 
reported by Okedoye et al. [12]. Although the various topics 
investigated about entropy generation and its minimization, the 
determination of total irreversibility in Heat and Hall Effect of 
an oscillating plate in a porous medium has not been 
encountered. In this context, the present investigation aims at 
obtaining an analytical determination of the entropy generation 
of Heat and Hall Effect of an oscillating plate in a porous 
medium. 
 

Nomenclature 
 

1A   Rivlin-Ericksen tensor; 
B   magnetic field; 

0B   applied magnetic field; 
E   electric field current; 
e  electron charge; 
grad   the gradient operator; 
J   the current density; 
K   constant permeability; 
M   MHD parameter; 

en   number density of electrons; 
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p   scalar pressure; 

ep   electron pressure; 
t   time; 

cT   Cauchy stress tensor; 

wu   main stream velocity/free stream; 
vu ,   the velocity components; 

V   velocity vector; 

wv   suction/blowing velocity; 
yx,   the coordinate axis; 

Cp  specific heat, 

'0Q   Heat source/Sink parameter 
   nabla/del operator; 

1i  complex identity 
 
Greek letters 
 
   acceleration/deceleration parameter; 
   dynamic viscosity; 

m   magnetic permeability; 
  kinematic viscosity; 
   density; 
   electrical conductivity; 

e   electron collision time; 

i   ions collision time; 
   porosity; 
    Hall parameter; 

i    cyclotron frequency of ions; 

e   cyclotron frequency of electrons; 
   oscillating frequency. 
   fluid density 

   coefficient of thermal expansion 
   entropy generation 
 
Formulation of the basic equations 
 
In Cartesian co – ordinate system, x-axis is assumed to be 
along the plate in the direction of the flow and y – axis normal 
to it. A uniform magnetic field is introduced normal to the 
direction of the flow. In the analysis, it is assumed that the 
magnetic Reynold number is much less than unity so that the 
induced magnetic field is neglected in comparison to the 
applied magnetic field. Further, all the fluid properties are 
assumed to be constant except that of the influence of density 
variation with temperature. Therefore, the basic flow in the 
medium is entirely due to buoyancy force caused by 
temperature difference between the wall and the medium. 
When 0t , the temperature of the plate is instantaneously 
raised (or lowered) to wT   and that the plate is accelerating 

with a velocity  ti
weu  1  in its own plane. Making reference 

to Cowling [13], when the strength of the magnetic field is 
very large, the generalized Ohm's law is modified to include 

the Hall current the ion-slip and thermoelectric effects are not 
included. Further, it is assumed  1Oee  and 1ii , 

where i and i  are the cyclotron frequency and collision 
time for ions respectively. We have also assumed that the flow 
is confined  0y  in a porous medium with constant 

permeability  0K  and porosity  10  .The MHD 
equations governing the unsteady flow of an incompressible 
fluid together with Brinkman's empirical modification of 
Darcy's law are [8] 
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On disregarding the Joulean heat dissipation, the boundary 
conditions are given by 
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We consider the fluid lying in the upper half space. The x − 
axis is taken along the flow direction and y − axis 
perpendicular to it: such that there is simultaneous 
suction/blowing at the boundary y = 0. In fact, it follows from 
the continuity equation (2.1) that  
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y
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which implies constvv w     
 
so that the velocity field takes the form 
 

  wvtyuV ,,         (2.5) 
 
Let us introduce the non-dimensional variables 
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where all the physical variables have their usual meanings. 
 

With the help of (2.5), (2.6), on dropping primes (  ) the 
governing equations (2.2) and (2.3) with the boundary 
conditions (2.4) reduce to 
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Where the flow control parameters are as defined below: 
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where Pr,  Grt,  ,  and M are Prandtl number, Grashof 
number for heat transfer, Porosity parameter, heat 
generation/absorption and Hartmann’s number respectively. 
 
METHOD OF SOLUTION 
 
To solve the problem posed in equations (2.7) – (2.9), we seek 
a perturbation series expansion in the limit of   for our 
dependent variables, ([15]). 
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Substituting equations (2.7) and (2.9) and the expression for 
the stream into equations (3.1), equating the harmonic and non 
– harmonic terms and neglecting the coefficient of 2 , we 
obtain the equations governing the steady state motion and the 
equations governing the transient. 
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and 
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These sets of equations are now solved analytically for the 
velocity and the temperature fields. The solutions of equations 
(3.2) – (3.5) are 
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The functions  yu0  and  y0  are the mean velocity and the 

mean temperature fields respectively; and  yu1  and  y1  
are, respectively, the velocity oscillatory part and the 
temperature oscillatory part fields.  Now substituting equations 
(3.8) into equation (3.1), we obtain the required expressions 
for temperature and velocity fields; 
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 

   ynymti

nymy

eaeae
eaeatyu

111
76

32,









          (3.8) 

 
ENTROPY GENERATION RATE  
 
For an incompressible Newtonian fluid, the local entropy 
generation rate is given by De Groot [11]: 
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On the right hand side of the above equation, the first term is 
due to fluid friction, the second is due to mass diffusion and 
the third term is due to heat conduction. The fourth term is due 
to heat transfer induced by mass diffusion and the fifth is due 
to chemical reactions.  In convective heat and mass transfer 
and MHD flow, irreversibility arises due to the heat transfer, 
the viscous effects and the mass transfer. The entropy 
generation rate is expressed as the sum of contributions due to 
viscous, thermal and diffusive effects, and thus it depends 
functionally on the local values of temperature, velocity and 
concentration in the domain of interest. According to Okedoye 
et.al [12], the characteristic entropy transfer rate is given by: 
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Where k, L, To and ΔT are respectively, the thermal 
conductivity, the characteristic length of the enclosure, a 
reference temperature and a reference temperature difference. 
 
In the case of non – reactive mixture, the heat due to diffusion 
is negligible, Okedoye et al [12] defined the dimensionless 
entropy Generation rate as 
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Dimensionless terms denoted 1 , and called irreversibilities 
distribution ratio, is given by: 
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Where To is respectively the reference temperature, which in 
our case, the bulk temperature.  
 
The local entropy generation rate is a function of temperature 
and velocity gradients in the y directions in the entire 
calculation domain. 
 
Using equation (4.1), on substituting equations (3.7) and (3.8) 
for irreversibilities, we have  
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Having obtained expressions an expression for the entropy 
generation, we then use a computer software package (Mapple 
11 release) to build up the real and imaginary parts and their 
graphical representation is presented for analysis.  
 

DISCUSSION OF RESULT 
 

The entropy equation given in (4.2) is general (describing the 
combined effects of heat generation/absorption, porosity 
parameter, MHD parameter, Hall parameter, thermal Grashof 

number and acceleration/deceleration) and is independent of 
the form of the steady solution. In order to point out the effects 
of various parameters on the Entropy generation rate, the 
following considerations are made: To be realistic, the values 
of Prandtl number are chosen to be Pr = 0.71 which represents 
air and Pr=0.015 for mercury at temperature 25oC and one 
atmospheric pressure.    For small thermal Grashof number, 
there is practically little or no convection and the entropy 
generation due to fluid friction is zero, consequently the total 
entropy generation is reduced to the entropy generation due to 
heat transfer. At higher Grashof number heat transfer due to 
convection begins to play a significant role increasing the flow 
velocity and in turn the entropy generation due to the viscous 
effects. Also the isotherms are deformed increasing the 
temperature gradient and consequently the entropy generation 
due to heat transfer. The positive values indicate that the 
impulsive velocity of the limiting surface is in a direction 
opposite to that of the flow. 
 
In Figure 1, we show the distribution of entropy generation at 
various times. It could be seen that entropy generation rate 
decreases as time or increases. Figure 2 display effect of 
thermal Grashof number on the entropy generation rate. It is 
shown that for the case of heating of the plate, the entropy 
generation rate increases while it reduces for the case of 
cooling of the plate as thermal Grashof number increases.  
 

 
 

Figure 1. Variation of Entropy Generation with time 
 

 
 

Figure 2: Entropy Generation for various thermal Grashof 
number 

 
From Figure 3, we discovered that entropy generation rate 
decreases away from the surface and increases as Hartmann 
number increases. Hartmann number introduces a retarding 
force which makes the velocity to highest when Hartmann 
number is zero. As this opposing force increases the entropy 
generated increases, The same effect is observed in the case of 
plate acceleration as shown if Figure 4. We sow in Figure 5, 
the effect of porosity parameter on the entropy generation. It is 
discovered that entropy generation rate increases as porosity  
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Figure 3: Variation of Entropy Generation with Hartmann 

number 
 

 
Figure 4: Entropy Generation for various plate acceleration 

     

 
Figure 5: Entropy Generation for various porosity parameter 

 

 
 

Figure 6: Variation of Entropy Generation various Prandtl 
number 

 

 
 

Figure 7a 

 
Figure 7b 

 

Figure 7(a, b): Variation of Entropy Generation with heat 
source/sink 

 

 
Figure 8: Variation of Entropy Generation various Porosity 

parameter 
 

parameter increases. For a medium of high conductivity, 
irreversibility due to heat transfer is minimal and hence the 
entropy generation is minimal. Thus entropy generation rate 
increases as Prandtl number increase as shown in Figure 6. 
Figure 7 (a) and (b) sows entropy generation rate for the case 
of heat generation and eat absorption respectively. It is 
discovered that entropy generation decrease as heat generation 
increases for higher values of heat generation, the impulsive 
entropy of the limiting surface is in a direction opposite to that 
of the flow. While entropy generation rate increase as heat 
absorption increase.  Variation of entropy generation rate wit 
irreversibility ratio is shown in Figure 8. It could be seen that 
entropy generation rate increase as irreversibility ratio 
increase. 
 
In Table 1, the effect of Hall parameter   on entropy 
generation rate is shown. It could be seen that entropy 
generation rate decreases as Hall parameter   increase. 
 

Table 1: Variation of Entropy Generation various Hall 
parameter 

 

 =0  =0.2  =0.4  =0.8 

1.642473 1.642430 1.641686 1.641736 
0.500729 0.500213 0.498768 0.494674 
0.172236 0.172292 0.172415 0.172564 
0.062959 0.063151 0.063653 0.065055 
0.023391 0.023529 0.023903 0.025030 
 0.008630  0.008702  0.008903  0.009539 
 0.003132  0.003164  0.003256  0.003559 
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