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ABSTRACT 
 
 

This paper addresses passivity-based synchronization method of uncertain modified Colpitts oscillators. Considering the effect of external 
disturbances on system’s parameters and nonlinear control inputs, a simple-workable robust passivity controller based on Lyapunov theory and 
linear matrix inequality (LMI) is designed for the output synchronization between a master system and a slave system consisting of uncertain 
modified Colpitts oscillators. A sufficient criterion is also investigated which can not only ensure the asymptotic stability of the solutions of the 
error dynamics but also reduce the influence of the disturbance within a prescribed level. The proposed controller can be obtained by solving a 
convex optimization problem presented by the LMI. In order to verify the effectiveness of the proposed control scheme, some numerical 
simulations are performed and a Pspice analog circuit implementation of the complete master-slave-controller system is presented. 
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INTRODUCTION 
 
The synchronization of chaotic systems has been a very active 
field in nonlinear dynamics since its discovery [Fujisaka and 
Yamada, 1983; Pikovsky, 1984]. It has been observed in 
lasers, electronic circuits, chemical reactions, plasma 
discharges, fluids, natural systems [Schuster et al., 1986; 
Wang et al., 2000; Boccaletti et al., 2002]. In the recent years, 
the synchronization of spatially extended chaotic systems has 
attracted particular interest [Junge and Parlitz, 2000]. Many 
effective control methods have been proposed to achieve 
chaos synchronization, such as linear and nonlinear feedback 
controls [Yassen, 2005; Bai and Lonngren, 2000; Li et al., 
2007]. However, a certain number of drawbacks have been 
revealed in the practical implementation of most chaos-based 
secure communications algorithms. In particular, one of the 
basic issues of interest is the effect of parameter variation 
uncertainty and exoteric perturbation. Moreover, some or all 
of the system parameters are variable from time to time. 
Therefore, investigation of external disturbance perturbations 
in synchronization between drive and response chaotic 
systems has become an interesting and important research 
topic in nonlinear science.  To overcome these difficulties, 
various adaptive synchronization schemes have been proposed 
and investigated [Liao and Lin, 1999; Zhang, 2004; Xiaojue, 
2008; Ahn, 2009; Roopaei and Zolghadri, 2008; Park, 2006].  
 
More recently, passivity-based control have been proved to be 
useful for the problem of motion coordination of multi-agent 
systems [Ren, 2007; Igarashi et al., 2007]. In Refs [Chopra 
and Spong, 2006] passivity-based control laws are presented 
for  output  synchronization  of  networks  of passive nonlinear 
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systems. Output synchronization is proved by employing the 
sum of storage functions as a Lyapunov function candidate. 
As shown in these references, passivity-based control enables 
one to handle communication delays and switching topology 
within a unified (energy-based) framework. Likewise, in 
[Arcak, 2007; Ihle et al., 2007] passivity is used to study the 
problem of steering the differences between the outputs of 
agents to a prescribed compact set, and to address the 
formation control or path synchronization problem.  Passivity-
based controls for chaotic Lu system and chaotic oscillations 
in power systems was proposed in [Kemih et al., 2006] and 
[Wei and Luo, 2007] respectively. Kemih et al., proposed a 
Passivity-Based Synchronization of unified chaotic system in 
the work [Kemih et al, 2007]. Wang and Liu also applied this 
technique to design a controller to control a unified chaotic 
system to zero and desired equilibrium in [Wang and Liu, 
2007]. Passitivity-based controls for hyperchaotic Lorenz 
system, hyperchaotic Chen system and nuclear spin generator 
chaotic system were proposed in [Wang and Liu, 2006; 
Kemih, 2009] respectively. Recently, Ahn, Jung and Joo [Ahn 
et al., 2010] proposed a passivity-based synchronization 
between two different chaotic systems.  
 
In 2000, Ababei et al.  [Ababei and Marculescu, 2000] 
proposed a new topology of the Colpitts oscillator called 
“modified Colpitts oscillator” (further called MCO in this 
work) which was used in the qualitative numerical 
transmission of information. The particular feature of this 
oscillator is the real possibility to control chaos using a single 
resistor, without varying any parameter of the intrinsic 
Colpitts oscillator, which offers the possibility of an electronic 
analog or digital control on the system dynamics. We also note 
that there exists an important difference between existing 
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MCO topologies and the classical Colpitts oscillator, which 
confers each one specific synchronization properties. In the 
case of the classical Colpitts oscillator, several studies have 
been achieved on the dynamical behavior and some control 
and synchronization strategies have been proposed [Fotsin and 
Daafouz, 2005; Guo-Hui, 2005]. More recently, 
synchronization of two identical modified Colpitts oscillators 
with structural perturbations have been proposed by 
Kammogne and Fotsin [Kammogne and Fotsin, 2011]. 
However, to the best of our knowledge, for the passivity-based 
synchronization between uncertain modified Colpitts 
oscillators and its implementation, there is no result in the 
literature so far, which still remains challenging.  In this paper, 
considering the effect of exoteric perturbation on system’s 
parameters, when only the system outputs are available, a 
passitivity-based synchronization method is used in order to 
achieve robust output passivity-based synchronization for a 
MCO. Based on Lyapunov stability theory and linear matrix 
inequality (LMI), we get a new sufficient condition that can 
guarantee the robustness of the controller against the effect of 
exoteric perturbations and also a criterion of asymptotical 
stability of the solution of the error dynamics.  
 
The LMI can be solved efficiently by using convex 
optimization algorithms [Boyd et al., 1994]. Throughout the 
paper, x  represents the Euclidian norm of the vector x, 

while ( )TA A A  (where ( )Q is the spectral radius 
of matrix Q) denotes the spectral norm of the matrix A. In the 
scientific literature on chaos control and synchronization, 
numerical examples are abundantly provided to verify 
synchronization algorithms meanwhile circuit 
implementations of the strategies are scarcely presented. For 
the sake of simplicity, it is always possible to begin with an 
analog simulation of the synchronization process which will 
confirm the practical feasibility of the scheme.  The new MCO 
topology with operational amplifiers provided in this work 
spreads its scope of application in the way where the state 
variables are easily accessible in practice, which is an 
important feature of chaotic oscillators in telecommunications. 
Therefore, in this work, Pspice simulations will be carried on 
electronic analog models of our synchronizations strategies of 
the modified Colpitts oscillators. The rest of the work is 
organized as follows: In section 2 the model and its chaotic 
behaviour are presented. In section 3, we give some basic 
definitions and concepts of passivity. Section 4 introduces the 
H synchronization problem, while in section 5 we present 
our main result that consists of a new controller that is robust 
enough against the effect of exoteric perturbation of MCO. 
Numerical simulations are given in section 6 and circuit 
implementations are presented to show real applications of the 
method. Finally, conclusions are presented in section 7. 
 
The modified Colpitts oscillator 
 
The model 
 
The simplest configuration of the MCO is shown on Fig.1 (a) 
[Ababei and Marculescu, 2000]. This circuit uses a bipolar 
junction transistor (BJT) as the gain element and a resonant 
network consisting of an inductor (L) and a pair of capacitors 
(C1 and C2). The resistor dR  is the additive element 

compared to the classical system. The nonlinear element is an 
NPN type BJT for which the simplified model shown on 
Fig.1 (b) consists of a non-linear voltage-controlled resistance 

ER  and a linear current-controlled current source 

EI [Maggio and De Feo, 1999]. Parasite capacitances of the 
BJT can be neglected in the frequency range of oscillation 
since their effect would only be a frequency shift [Guo-Hui, 
2005]. The V-I characteristic of the nonlinear resistor 

ER (which corresponds normally to the emitter-base diode) 
and its approximate expression are defined as usual by:     
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    exp      
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where SI is the inverse saturation current of the emitter-base 

diode, e the elementary charge, Bk  the Boltzmann constant 
and T the absolute temperature. The thermal voltage is given 

by: 26B
T

K TV mV
e

  . Here we set 1110SI A . The 

base-emitter voltage drop BEV  is given by: 
 

2 dR ( )BE L BV u i i                                (2) 
 

where Bi  is the base current. Moreover, the relations between 
the currents are 
 

                1 2 3,  L c Li i i i i i                      (3)  
 

We assume 1F   where F is the common-base forward 
short-circuit current gain. This corresponds to neglecting the 
base current. Since we have L Bi i , the simplified state 
equations for the schematic in Fig.1 (a) are the following 
[Kammogne and Fotsin, 2011]. 
 

1

1 1

L Edu i I
dt c c

                                                                       

 2 2

2 2 2

CCL

e e

Vdu i u
dt c R c R c

                           (4)  

d 1 2( R )CC CL
L

V Rdi u ui
dt L L L L


     

We now introduce a set of dimensionless state variables                 
(x, y, z) where we normalize voltages, currents and time 
according to the following relations: 
 

1 1 2
1

, , , , CC
CC CC L

Vu V x Lc t u V y i z
L c

     
      (5) 

 
Using (2) ,(3) and (5), the system of Eqs. (4) can be rewritten 
in the following form : 
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With  

d d
0 11 2

2 2 11

( R ) R, , , ,S C CC S
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Let’s select the parameters: L=98.5µH, 35CR   , 

400ER   , 5CC EEV V V  , 1 2 54C C nF   

dR 0.5  which 

yields 02.251362, 192.3, 0.1064814815a b b  
11

11 20.934, 8.518518.10c a   , the system shows a 
chaotic behavior characterized by a maximal Lyapunov 
exponent max 0.06393   which confirms occurrence of 
chaotic oscillations. 
 
Passivity 
 
Consider the following differential equation 
 

   ( ) ( ( )) ( ( )) ( ( )) ( ( ) ( ) 
( ) ( ( ))                                                                        

F GX t F X t X t G X t X t U t
Y t H X t

   



  (7) 

 

where ( ) nX t R  is the state variable, ( ) mU t R  is the 

external input, ( ) mY t �  is the output, F and G are smooth 

vector fields and H is a smooth mapping. ( ( ))F X t  and 

( ( ))G X t denotes parametric uncertainties. Without loss of 

generality, we suppose that the vector field F has at least one 
equilibrium point. The notion of passivity can be described as 
follows: 
 
Definition 1  
 
If there exist two nonnegative constants   and   , a positive 
semi-definite function ( ( ))S X t  and a nonnegative function 

( )R t  such that 
 

 
 

The system (7) is said to be passive in the presence of 
disturbance from the external input ( )U t  to the  output ( )Y t . 
The Physical meaning of a passive system is that the energy of 
the nonlinear system (7) can be increased only through the 
supply from the external source. In other words, a passive 
system cannot store more energy than it is supplied. A Passive 
system is naturally a stable system. Passive systems exploit 
the input-output relationship based on energy-related 
considerations to analyze stability properties.  The following 
statement describes a basic stabilizability property of passive 
systems. 
 

Corollary1: [Byrnes et al., 1991)] 
 
If we neglect the parametric variation of the system 
( ( ( )) 0 F X t  and ( ( )) 0 G X t  ) then, the relation (8) 
leads to 
 

0 0
( ) ( ) ( ( ))

t tTU Y d S X d        ,    0t           (9) 

 
Then, the systems (7) - (8) is called strictly passive if 

( ) 0S X   and lossless if ( ) 0S X   
 
Definition 2  
 
Suppose the system (7) is passive. Let  ( ) �  be any smooth 
function such that (0) 0   satisfying the following 
condition: 
 

( ) ( ( )) ( ) 0TY t Y t R t                               (10) 
 

For each nonzero ( )Y t , the control law ( ) ( ( ))U t Y t   
asymptotically stabilizes the equilibrium point of the system 
(7). 
 
System formulation 

Let a class of MCO be defined as follows          
          
                  X( ) ( ) ( ( ))  AX C X B                  (11)   
                  ( ) ( )y DX     
  

3X R is the system state, 3y R  is the output vector, 

3 3 3 1, ,  and  A C D B R  �  are known matrices. 

3 3: R R   is a nonlinear continuously differentiable 

function.  Considering the effect of the exoteric perturbation 

on system’s parameters, the master’s system is given by 

 
             1 1( ) ( ( )) ( ) ( ( )) ( )

( ) ( )m

X A A X C X B B
y DX
     
 
      






           (12)     

 
And the slave system is given by  
 
             2 2( ) ( ( )) ( ) ( ( )) ( ) ( )

( ) ( )s

Y A A Y C Y B B u
y DY
      
 
     







   (13)   

 

where 1( )A   and 2 ( )A   are bounded structural variations 

of the system which satisfy the condition ( )  iA    , 

1, 2i   (  being a positive constant), 

1 2( ) and ( )B B   are perturbed matrix such that 

( ) ( ) ; 1, 2i iA B i      and ( )u  is the nonlinear 

controller.  and  m sy y  are respectively the output vectors of 
the master and the slave systems. Our goal is to design a 
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simple appropriate controller ( )u   such that the trajectory of 
the slave system (13) asymptotically approaches the master 
system (12) and finally achieves synchronization.  Define the 
synchronization error vector as  
 

 
 
Definition 3: Systems (12) and (13) asymptotically 
synchronize if the synchronization error ( )e   satisfies   

lim ( ) 0 e






 

 
Assumption 1 
 
 We define 2 1( )=  ( ) ( )  B B       and 

2 1( ) ( ) ( )h A A     . Let 

( ) ( ) ( ) ( ) ( ) ( )T T Th h           and 

assume 2( ) L   , that is  
0

( ) ( )T d    


  . 

  
The H  performance problem will be considered, which can 

be formulated as follows:  Design the controller ( )u   such 
that:  

o If ( ) 0    
 

0 0
ˆ( ) ( ) ( ) ( )T Te t Qe t dt y t t dt

 
                (16) 

 
where Q is a positive symmetric matrix, ( )  is an external 
input signal, ˆ( )y   is a positive function.  For a particular 
selection of ( )  [Ahn et al., 2010],  the error system (15) will 
be asymptotically stable;   Given a positive scalar   and under 
zero initial conditions,  
 

o If  ( ) 0    the following conditions will hold:       
   2

0 0 0
ˆ( ) ( ) ( ) ( ) ( ) ( )T T Te Qe d d y d            

  
     (17)   

   
  is the disturbance attenuation level [ Stoorvogel, 1992] 
which is defined by  
 

             0

0

( ) ( )

( ) ( )

T

T

e Qe d

d

  

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






.                       (18) 

One part of this work is to determine a suitable gain matrix 
(further called K) such that the performance index (18) is 
within the upper bound, that is,  
 

             

2 2

2

( ) 0, ( ) 0 2 2ˆ( ) , ( )

( )
sup

ˆ( ) ( )
e

y
L y L

y
y  
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


   
 

 
   

�        (19)   

 

Lemma 1 (Schur Complements): 
 
 For a given symmetric matrix  

 
 

Main results 
 
Assumption 2: We can choose the controller in this form 
 

 ( ) ( ) ( ( )) ( ( ) ( )u KDe C Y X           
     

(20)   
 
where K is the gain matrix. One advantage of this type of 
controller is that it can be easily constructed through time 
varying resistors, capacitors or operational amplifier and their 
combinations, or using a digital signal processor together with 
the appropriate converters (an example of construction is 
presented at the end).    
      
Assumption 3: For a given 0   and 0TQ Q  , if 

there exist >0 TF F and suitable matrix L  such that the 
following equality holds 
 

         
1 2

2

1

  0 0
0

T TAF FA L L I F I
F I
I Q

 





    
   
  

       (21)   

 
then the passivity-based-synchronization is achieved under the 
controller (20).   
      
Theorem 1.  Systems (12) and (13) approach synchronization 
under the condition (20) 
 
Proof.  The closed loop error system with the control (19) can 
be written as  
 

 
 

Where >0 TP P .  It obvious that V is a positive function 
for all 0  .     
                                                                         
Differentiating V with respect to time   one obtains 
 

 
Proposition 
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For any matrices 1 2,  Q ,  0n m n m TQ R R       , and 
n mR   we have the following inequalities. 

                                 
-1

1 2 2 1 1 1 2 2
T T T TQ Q Q Q Q Q Q Q                            (25) 

This proposition holds:  
 

 
 

For any time 0  , the system state is bounded (as the system 
is chaotic), hence we may write  ( )X d  . Here 

,  and d    are positives constants.  The Relation (24) leads 
to  
 

         
Now let   2 2 2 2 2= d d      , ˆ ( ) 2 ( )T Ty e P   and   

( ) ( ) ( ) ( )T T Th h          
 
If the matrix inequality  
 

2 2 1 2( ) ( ) 0TA KD P P A KD P I Q                      (27)  
 

is satisfied, we have  
 
              2 ˆ( ) ( ) ( ) ( )T T TV e Qe y                            (28)  
 
It is easy to find that if ( ) 0    then  
 

2
min ˆ( ) ( ) ( ) ( ) ( ) ( ( ) 0)TV Q e y e                  (29)  

 
Integrating both sides of (29) from 0 to   gives 
 

0 0
ˆ( ( )) ( (0)) ( ) ( ) ( ) ( )T TV e V e e t Qe t dt y t t dt

 
      

 

Let ( (0))V e   since ( (0)) 0V e   , 

0 0 0
ˆ ( ) ( ) ( ) ( ) ( ( )) ( ) ( )T T Ty t t dt e t Qe t dt V e t e t Qe t dt

  
           (30) 

 
The relation (30) satisfies the passivity definition (9) 
If ( ) 0   , integrating both sides of Ineq.(28) gives  
 

2

0 0 0
ˆ( ( )) ( (0)) ( ) ( ) ( ) ( ) ( ) ( )T T TV e V e e t Qe t dt t t dt y t t dt

 
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
       (31) 

 

Let                  ( ) ( ) ( )TR t t t                                      (32) 
 
we obtain                             

2 2

0 0 0 0 0
ˆ ( ) ( ) ( ) ( ) ( ) ( ( )) ( ) ( ) ( )    (33)T T Ty t t dt e t Qe t dt Rt dt V e e t Qe t dt Rt dt

   
    


           

 

Since ( ( )) 0 V e    we have the relation in Ineq. (8). This 
completes the proof. For solving inequality. (27), let’s 
consider the lemma1 which can be easily solved by using the 
MATLAB LMI Control Toolbox. 
 
Theorem 2: Given three positive constants ,  , and take 
into account the lemma 1, then the matrix inequality (27) is 
equivalent to 
 

1 2

2

1

( ) ( )
  0 0

0

TA KD P P A KD I P I
P I
I Q
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


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   
  

           (34)   

 
Pre- and post-multiplying Ineq. (34) by the -1diag(P ,I,I)  and 

introducing a change of variables such as 1F P  and 
1L KDP , Ineq. (32) is equivalently changed into the LMI 

form (21). Then the gain matrix of the control input ( )u   is 

given by 1 1K LF D  . This completes the proof.  
According to the definition 2, once the error system (17) has 
been rendered passive, the external input signal 

ˆ( ) ( ( ))y      satisfying (0) 0   and 

ˆ ˆ( ) ( ( )) 0Ty y    for each nonzero ˆ( )y  approaches 
asymptotically stabilizes the error (17).  
 
Theorem 3: If the external input signal ( )   is selected as  
 

2 ˆ( ) ( )y                                                (35) 
 

The closed-loop error system approaches asymptotically the 
synchronization. 
 
Proof: For 2 ˆ( ) ( )y     , the time derivative of 

( ( ))V e t satisfies 
 

 
2 2

2

ˆ ˆ( ( )) ( ) ( ) ( ) ( )

ˆ ˆ            ( ) ( ) ( ) ( )

T T T

T T T

V e e Qe y y

e Qe y y

        

      

   

   



 
 
Considering relation (10) of the definition 2, one obtains 
 

                     ( ( )) 0V e                                            (36) 
 

This guarantees the asymptotical stability from Lyapunov 
stability theory. This completes the proof. 
Simulation investigation  

Numerical analysis 
 
In this section, numerical results are given to verify the 
effectiveness of the proposed method. The master and slave 
system are expressed as on equations (12) and (13), with  
 

2

0 0

11

0 0 1 0 1 0 0 exp( )
0 1 , , 0 0 0 , ( ) 0
1 1 1 0 0 0 0

a az by
A b B b C X

c


         
                   
                

, 

1 0 0
0 1 0
0 0 1

D 
 
   
    
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Where 0  . For all simulations we take 0.5dR    
which corresponds to a chaotic state of the MCO system.  The 
output is defined as ˆ ( ) 2 ( )y Pe  . Fig.2 shows the time 
history of synchronization of the MCO of system (6) without 
disturbances. We select structural variations simply as 
follows: 

   

1 2

0 0 0 0 0 0
( ) 0 0 0 , ( ) 0 0 0

0 0 8 0 0 3
A A   

   
         
      

  (37) 

 
where    ( ) 1,1  and ( ) 1,1        
Let us select the perturbed matrices simply in the following 
form 
 

               
1 1

0
( ) ( )

0
B   

 
    
  

  
2

2

( )
and  ( ) 0

0
B

 


 
    
  

    (38)                                                                

 
Firstly, some constants are given in the following: 

0.75,  2,  0.18,   0.15, 1d        . 
 

2( ) sin(12 ),  ( ) sin(23 ) and ( ) 0.2sin(6 ) 0.8sin(8 ) 0.3sin(12 )             .  
 

Simultaneously, we adopt 1( )  as a white Gaussian noise in 
the range [-4, 4] whose histogram is provided in Fig.3. The 
initial conditions are  

4 4 4
0 0 0( , , ) (17 10 ,12.10 ,13.10 )x y z      for the master 

system and 7 2 3(2.10 , 2.10 ,2.10 )    for the slave system. 
Fig. 4(a) and 4(b) respectively present the output 
errors ( )

xey  , ( )
yey   and ( )

zey   with disturbance when 

any control input is not applied. In order to verify the 
convergence of the trajectory, let us introduce the quadratic 
gap of the error system: ( ) ( )

qey De  .  Fig. 4(c) shows 

the history of ( )
qey  . It is found that, when the system 

parameters are perturbed, the errors with any control input 
cannot converge to zero as time tends to infinity.  In order to 
realise the output synchronization, let’s consider our approach: 
By use of the MATLAB LMI toolbox, from (21) 

with 15Q I  , where 
3 3I R   is an identity matrix, we 

derive the following matrices   
 

3

0.1090 0.0000 0.0000
10 0.000 0.1090 0.0000

0.0000 0.0000 0.1090
P 

 
   
  

   and 0.4843 0.0000 0.0000
0.0000 0.3778 0.0000
0.0000 0.0000 0.4497

K
 
   
  

     (39) 

  
Fig. 4(a), Fig. 5(b) and Fig. 5(c) show the output 
synchronization errors ( )

xey  , ( )
yey  , ( )

zey   and the error 

norm ( )
qey  when the presented method is applied. A simple 

observation shows that the present controls reduce efficiently 
the amplitude of synchronization errors. The maximal value of 

( )
qey   after the transient period is 0.0016, which is very 

small compared with 0.15  . At this time, we can 
conclude that robust positivity output passivity-based-
synchronization is achieved via the proposed method. Fig.6 
shows the time history of synchronization of the MCO of 
system (6) without disturbances obtained with the gain of 
matrix (39) and the following initial conditions 

4 4 4
0 0 0( , , ) (17 10 ,14 10 ,34 10 )x y z       for the 

master system and 4 4 4(17 10 ,14 10 ,34 10 )     for the 
slave system. It clearly appears that after a transient oscillatory 
period, the synchronization errors converge to zero. Fig. (6a), 
(6b) and (6c) show that the synchronization is achieved 
at 27  . Secondly, we select constants 

0.75,  2,  0.18,   0.15, 0.2d         
 

2( ) sin(12 ),  ( ) sin(23 ) and ( ) 0.2sin(6 ) 0.8sin(8 ) 0.3sin(12 )             , 

1( )  is taken as uniform distribution random noise in the 
range [-1,1] provide in Fig. 7. Fig. 8(a), Fig.8 (b), Fig.8(c) and 
Fig. 8(d) depicts the synchronization errors  and the error 
norm when any control input is not applied with the same  
initial conditions  adopted for both the master and slave 
system: 7 5 4(10 ,2 10 ,3 10 )   . We also observe that the 
errors with any control input cannot converge to zero with the 
passage of time . In order to observe H  performance with 
attenuation, we derive with the aid of MATLAB LMI toolbox 
the following matrices:   
 

   0.0960 0.0000 0.0000
0.0000 0.0960 0.0000  
0.0000 0.0000 0.0960

P
 
   
  

; 2.1867 1.4644 0.6225
1.4644 1.6543 0.2250
0.6225 0.2250 2.4833

K
 

    
  

     (40) 

 
 Figures 8(a), 8(b), 8(c) and 8(d) respectively present the 
synchronization errors ( )

xey  , ( )
yey  , ( )

zey  and the error 

norm ( )
qey   based on the proposed method. It clearly 

appears that the errors system change approximately in the 
range 0.0015,  0.0015 . The amplitude of error norm is 

0.0035 which is to be compared with 0.75   . Hence, the 
fluctuations of the errors are very small as compared to the 
dynamical ranges of the system state variables.  Thus, our 
control scheme in the presence of structural perturbations is 
robust enough, which is consistent with our theoretical 
analysis.  
 
Circuit implementation 
 
MCO with operational amplifiers  
 
Although the MCO is a relatively simple oscillator, access to 
some state variables of the system can practically turn to a 
delicate task, because of the high frequency of operation. In 
order to simplify access and manipulation of the three state 
variables x, y and z, we propose in this section an electronic 
analog operational amplifiers-based model of the MCO 
(further called MCOOA). The circuit includes five operational 
amplifiers for integration and inversion operations. The device 
features are high slew rates, low input bias and offset currents 
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and low offset voltage temperature coefficient. This is 
significant to reduce sensitivity to circuit parameter values. 
Hence we obtain a particularly elegant circuit in which the 
required nonlinearity is provided by a single silicon diode. 
This diode model is here taken as    

  

0

0

0.026( )( , ) exp 1

0.026( )            exp

D T

D T

R az byf y z I
R V

R az byI
R V

  
  

 
  

  
                  (41)     

                                       
with 12

0 10I A  and 0.026TV V , giving a forward 

voltage drop of approximately 0.6V  at room temperature, as 
it is well-known for normal silicon diodes.   The components 
values and the voltage sources of this circuit are taken as 
Cx=Cy=Cz=10nF, (we recall that the voltages VCx, VCy, and 
VCz represents respectively the variables x, y and z). R=10KΩ, 
RD=  117.39Ω,  R1=170.837KΩ,  R2=2KΩ, 
R3=R4=93.913KΩ,  R5=10.7KΩ,  V1=V2=1V.  The 
operational amplifiers are supplied with Vcc=+15V and    
Vss=-15V. The system parameters are given by  
 

2 0
D

Ra I
R

 , 
10.026

Ra
R

 , 
20.026

Rb
R

 , 

11 4
5 3

1
10

c
R C

 ,     0 4 4
3 2 4 2

1 1
10 10

b
R C R C

  .  

 
The resulting phase space plot of this circuit shows a good 
agreement with the Matlab simulations. The time history of 
the trajectories and phase portrait are provide in Fig. 11.  It is 
noted that, as a new chaotic jerk circuit proposed by J.C. 
Sprott [Sprott, 2011], the components values were chosen to 
make the circuit oscillate in the audio range (see frequency 
spectrum of the x output in Fig.12), so that the chaos can be 
easily heard and displayed on any oscilloscope, although the 
frequency can be scaled up or down as desired over several 
decades. No attempt was made to find the upper frequency 
limit of operation since that would largely depend on the 
choice of components.  
 
Pspice synchronization 
 
In this part, we present a prototype of the passivity-based 
synchronization scheme of modified Colpitts oscillator in 
practical situations when no disturbance is taken into account.  
The components of the controller are given by 
 

   1 1 2

2 2

3 3

( ) ( ) exp exp

( ) ( ) 

( ) ( )

x s s m m

y

z

u t e t Ca az by az by

u t e t
u t e t







         
 

 

       (42)   

                                                     
where 

2 2 2
1 1 1 2 2 2 3 3 32 , 2 , 2K P K P K P               

and  3
1 2 3 0.1090 10P P P      

 
The component values of the controller are taken as R=10KΩ, 
Rz=22.3KΩ, Ry=26.5KΩ, Rx2=117391559 MΩ, RX1=20.7KΩ. 
The parameters are given by  

1 2 3 24 4 4 4
1 1 2 3 2 1

1 1 1 1; ; ;
10 10 10 10X Y Z X

a
R C R C R C R C

       

Fig. 13 presents the Pspice realization of the passivity-based 
synchronization process, while Fig.14 shows the time 
variations of the synchronization errors 

( ) ( ), ( ) ( )CXm CXe CYm CYeV t V t V t V t   and ( ) ( )CZm CZeV t V t from 
a Pspice simulation (where subscript “m” indicate voltages 
from the master oscillator and “e” the voltages the from the 
slave system).  
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Fig. 1.  Circuit model:  (a) Schematic of the Colpitts oscillator.  
(b) BJT model in common base configuration 
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Fig. 2  (a) time history of MCO   (b) Phase portrait ( x versus z, x 
versus y, z versus y)  

 

-4 -3 -2 -1 0 1 2 3 4
0

200

400

600

800

1000

Noise

Fr
eq

ue
nc

y

 
Fig. 3. Histogram of uniform random noise in the range [-4, 4] 
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Fig. 4 Time evolution of the synchronization errors with 
disturbance when no control input is applied. (a): ( )

xey   ;               

(b): ( )
zey  ; (c): ( )

xey 
and 

(d) : ( )
qey 
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Fig. 5. Time evolution of the synchronization errors in presence of 
the disturbance. 
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Fig. 6 Time evolution of the synchronization errors without 
disturbances. (a): ( )

xey  ;( b): ( )
yey   (c): ( )

zey  ;                  

(d) : ( )
qey 
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Fig. 7  Uniformly distributed random noise in the range [-1,1]. 
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Fig. 8 The time history of the synchronization errors and error 

norm in presence of the disturbance when no control input is 

applied : (a): ( )
xey  ;( b): ( )

yey   (c): ( )
zey   (d): ( )

qey   
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Fig. 9. Time evolution of the synchronization errors and error 
norm in presence of the disturbance; (a): ( )

xey  ; (b): ( )
yey   ; 

(c): ( )
zey   and (d): ( )

qey 
 

 

      

Fig. 10.  Electrical analog model of MCO on Pspice 
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Fig. 11. Time history and phase portraits of the MCOOA 

 

 
Fig. 12. Frequency spectrum of one output state of MCOOA 

 
 

Fig. 13:  Pspice implementation of the passivity-based 
synchronization process of MCOOA 

 

 
Fig. 14  Time variation of the synchronization errors from  a 

Pspice simulation 
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Conclusion 
 
In this paper, we proposed a passivity-based synchronization 
strategy of modified Colpitts oscillators with an external 
disturbance perturbation. Based on the Lyapunov theory and 
linear matrix inequality (LMI), A new sufficient condition is 
derived that can not only make the outputs of  both master and 
slave systems reach H synchronization with the passage of 
time but also reduce the influence of the disturbance and  
guarantees asymptotic synchronization between the drive 
system and the response systems. Circuit simulations are 
investigated and show the feasibility of the synchronization 
scheme. As the simulation show, the proposed scheme could 
achieved passivity-based synchronization of two uncertain 
modified Colpitts oscillator and maintain robust stable 
synchronization in the presence of bounded external 
disturbances. 
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