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1. INTRODUCTION 
 
In this paper we deal with existence, form derivation and topological derivation results for a linear thermoelasticity problem. We note in the 
literature see [26], [27], [28], [29], [30] that thermoelasticity problems have many applications in solar energy, industry a
etc. This leads us to focus on existence and derivation results, which will be followed by applications in the above
work. Domain optimization is used today in many industrial environments, Airbus for the reduction of structures, t
to vibrations and many other areas of physics. In [10], the authors address a shape optimization problem for a thermoelastici
uncertainties in the Robin boundary condition. The problem was formulated as the minimiz
constraint on the expectation of. They derived analytical expressions of the shape functional to obtain the shape derivative 
correlations. An efficient numerical method based on the low r
implemented numerically via the level method. The isogeometric approach has been adopted in research areas where sophisticate
representations are demanding, such as shell analysis [14, 16], fluid
optimization [6,7]. With respect with thermoelastic behavior, the thermomechanical contact of the mortar problem [5, 6] and m
distribution of functionally graded structures [9, 10], were studied using the isogeometric approach. For more information see [20, 23]. The 
paper in organized as follows: In the first section we give the introduction. In the second part we give some preliminaries r
solution existence results for the studied linear thermoelasticity problem. In section 3, we study some existence results of 
with constraint partial differential equations coming from the model in the stationary case. The section 4 
Lagrange method and the optimal condition is geven. And in the section 5, we give the conclusion and some extensions.
 

2. PRELIMINARIES RESULTS
 

Let Ω be a bounded domain in R3, ω a subset of Ω 
ω ⊂ Ω. Defining the characteristic function  
 

Let Ω be a bounded domain in R3, ω a subset of Ω 
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. We define 
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this paper, we examine shape optimization problems for thermoelasticity. We first propose a model 
of the thermoelasticity problem, and then provide a mathematical analysis for the model under 
consideration. We also show result for the existence of optimal shapes in three ways, and we conclude 
by giving a shape derivation result using the Lagrange method. 
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Considering a shape function J defined by 

𝐽(Ω) = α ∫Ω
|𝑢Ω − 𝑢଴|ଶ 𝑑𝑥 + 𝛽 ∫Ωห∇௨Ω

ห
ଶ

𝑑𝑥,                                                                                                

where 𝑢Ω∈ 𝐻ௗ௜௩(Ω,ோయ) is solution to the variational problem

𝜇 ∫Ω∇𝑢Ω. ∇υ dx − (𝜆 + 𝜇)∫Ω∇(∇. 𝑢Ω)𝜐 𝑑𝑥 − 3𝑘𝛼

and                                                                                                                          

∫Ω∇𝜃Ω∇𝜑 𝑑𝑥 = ∫Ω𝑔𝜑 𝑑𝑥                                                                                                                                   

for all v ∈ 𝐻ௗ௜௩(Ω,ோయ) and ϕ ∈ D(Ω) for some given functions 
following variational problem 

𝜇∫Ω∇𝑢Ω. ∇𝜐 𝑑𝑥 = ∫Ω𝑓𝜐 𝑑𝑥 + 3𝑘𝛼∫Ω∇𝜃Ω𝜐 𝑑𝑥                                                                                                 

with 𝑢Ωച
 is solution to: 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

ିఓ∆௨Ωചష(ఒାఓ)ௗ௜௩௨Ωച
ሬሬሬሬሬሬሬሬ⃗ )ାଷ௞௔∇ఏΩୀ ௙ ሬሬሬ⃗    ௜௡  Ωച

ି∆ఏΩചୀ௚ ௜௡ Ωച

ങഇΩച
ങ೙

ୀℎ  ௢௡ డΩച

ങഇΩച
ങ೙

ୀ଴ ௢௡ డഘച

ങೠΩച
ങ೙

ୀ௩బ ௢௡ డΩച

ങೠΩച
ങ೙

ୀ଴ ௢௡ డഘച

                                                                                                              

Where 𝑢Ωച
 𝑖s solution to the variational problem 

 

 
and             
 

       
 
Existence of solution to (2.7)        
 
We consider the following note-by-(2.8) equation 
 

 
 
This will therefore lead us to study two boundary value problems separately. We will therefore seek a solution 
inject into the following systems of equations to study the solution of the problem

 

⎩
⎪
⎨

⎪
⎧−𝜇∆𝑢Ω − (𝜆 + 𝜇)∇(𝑑𝑖𝑣 𝑢ሬ⃗ ) + 3𝑘𝑎∇𝜃Ω =  𝑓 ሬሬሬ⃗    𝑖𝑛

డೠΩ

డ೙
= 𝑣଴ 𝑜𝑛 𝜕Ω

డೠΩ

డ೙
= 0 𝑜𝑛 𝜕ఠ

We seek θ belonging to a Hilbert space solution of 

Definition 2.1 Given a bounded open set Ω of class 
function u of class C2(Ω)¯ verifying  
 
It is therefore clear that there is no uniqueness in the solution to this Neumann problem. In fact, i
connected component Ω0 of Ω and any c ∈ R then 
C0(∂Ω) and g ∈ C0(Ω). 
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is solution to the variational problem 

𝑘𝛼∫Ω∇𝜃Ω𝜐 𝑑𝑥 = ∫Ω𝑓𝜐 𝑑𝑥                                              …….………………

and                                                                                                                                                                                  

                                                                                                                …………………….......……..(2.4)    

for some given functions f ∈ H1(R3), g ∈ H−1(Ω). In the case where div 

                                                                                                 ……………………….….……..(2.5

                                                                                                             ………..……………..…………(2.7)

 

 

This will therefore lead us to study two boundary value problems separately. We will therefore seek a solution 
inject into the following systems of equations to study the solution of the problem 

𝑖𝑛 Ω 

                                                                                    ……………………………………(2.9)

belonging to a Hilbert space solution of (2.8). We give the definition of what we mean by classical solution of this problem.

of class C2 of RN of boundary ∂Ω and h ∈ C0(∂Ω.) We call a classical solution to: problem 

It is therefore clear that there is no uniqueness in the solution to this Neumann problem. In fact, if u is a solution to this problem for any 
R then u + cχΩ0 is still a classical solution. We also see that there is no solution for any function 
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           ………………...…………(2.2) 

…….……………….…………(2.3)        

                                                         

…………………….......……..(2.4)     

iv 𝑢Ω= 0 in Ω, (2.3) is reduced to the 

……………………….….……..(2.5)     

………..……………..…………(2.7) 

This will therefore lead us to study two boundary value problems separately. We will therefore seek a solution θΩ of problem (2.8) that we will 

……………………………………(2.9) 

. We give the definition of what we mean by classical solution of this problem. 

We call a classical solution to: problem (2.8) all 

is a solution to this problem for any 
is still a classical solution. We also see that there is no solution for any function h ∈ 
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If the equation admits a classical solution then for any connected component 

ℎdσ +  ∫Ωబ
𝑔 𝑑𝑥 = 0                                                                                                                             

 
We have the following theorem: 

Theorem 2.1 Let Ω be a bounded open set of RN and 

Neumann’s problem (2.8) admits a solution if and only if,
 
∫

பΩhdσ + ∫Ωg dx = 0.                                           
 
Proof. See [7, 8]. 
 
Theorem 2.2 Let Ω be a bounded open set of RN of class 

⎩
⎪
⎨

⎪
⎧−𝜇∆𝑢Ω − (𝜆 + 𝜇)∇൫𝑑𝑖𝑣𝑢Ωሬሬሬሬሬ⃗ ൯ + 3𝑘𝑎∇𝜃Ω =  𝑓 ሬሬሬ⃗    

డೠΩ

డ೙
= 𝑣଴ 𝑜𝑛 𝜕Ω

డೠΩ

డ೙
= 0 𝑜𝑛 𝜕ఠ

 
has a solution. This solution is unique up to an additive constant.

Proof. See [7, 8]. 
 

3. OPTIMAL SHAPE RESULTS
 
3.1. Existence of a solution by monotonicity of the functional
 
For the existence of optimal shape, we adapt the method proposed by Buttazo and Da
This method shows the existence of a minimum by considering the functional as monotone for inclusion and lower semi
topology of γ-convergence. We denote by A(D) the set of quasi
 
A(D) = {Ω ⊂ D\Ω is quasi-open}.  

studying the follozing problem min{G(Ω) : Ω ∈ A(
 

with G the functional defined by 
 
Under the constraint of the problem 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

ିఓ∆௨Ωି(ఒାఓ)∇(ௗ௜௩௨Ωሬሬሬሬሬሬ⃗ )ାଷ௞௔∇ఏΩୀ ௙ ሬሬሬ⃗    ௜௡  Ω 
ି∆ఏΩୀ௚ ௜௡ Ω
ങഇΩ
ങ೙

ୀℎ  ௢௡ డΩ

ങഇΩച
ങ೙

ୀ଴ ௢௡ డഘ

ങೠΩ
ങ೙

ୀ௩బ ௢௡ డΩ

ങೠΩ
ങ೙

ୀ଴ ௢௡ డഘ

                                                       

 
and the Borel function p verifies the following hypothesis:
 
p(x,y,z) is lower semi continuous on (x,z) in R for all 
 

 

with b is a positive constant. Furthermore, we assume that the function 
optimal domain Ω. This optimal domain belongs to the class of 
a consequence, if p > N these optimal sets are actually open, but if 
we made. The existence of optimal sets Ω could have
the class of p-quasi open sets. 
 

We can prove, under rather general assumptions on the integrand 
[21]. 
 

Theorem 3.1 Let G: A(D) → (−∞,+∞) be a functional defined by
 
𝐺(Ω) = ∫

஽
𝑝(𝑥, 𝑢Ω, ∇𝑢Ω) 𝑑𝑥                                                                                                                             
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ution then for any connected component Ω0 of Ω, we have 

                                                                                                                                                        

and ∂Ω its boundary of class C2. h ∈ C2(∂Ω) and g ∈ L2(Ω). 

Neumann’s problem (2.8) admits a solution if and only if, 

                                                                                                                                                   

of class C1. Then the following partial differential equation 

 𝑖𝑛  Ω  

                                                                                                

a solution. This solution is unique up to an additive constant. 

3. OPTIMAL SHAPE RESULTS 

3.1. Existence of a solution by monotonicity of the functional 

For the existence of optimal shape, we adapt the method proposed by Buttazo and Dal Maso. For further information, the reader can consult [6]. 
This method shows the existence of a minimum by considering the functional as monotone for inclusion and lower semi

the set of quasi-open sets contained in a bounded open set D ⊂

A(D), |Ω| = K, K constant}                                                             

                                                                           

                                                                                                             

verifies the following hypothesis: 

in R for all (x,z) in D is decreasing on R p.p (x,z) ∈ D. There exists C > 

 

is a positive constant. Furthermore, we assume that the function p is decreasing. With this hypothesis, we can give the existence of an 
. This optimal domain belongs to the class of p − quasi open sets, defined as the sets {u > 0} 

these optimal sets are actually open, but if p ≤ N this fact does not occur any more under the very general assumptions 
could have been obtained through a generalization the case p > 1, making use of a 

We can prove, under rather general assumptions on the integrand p, that Ω has a finite perimeter. For more informations the reader ca

be a functional defined by 
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                           ………………………..(2.10) 

 

                                                                                                        ………………………..(2.11) 

                                                                                               ………………………….(2.12) 

l Maso. For further information, the reader can consult [6]. 
This method shows the existence of a minimum by considering the functional as monotone for inclusion and lower semi-continuous for the 

⊂ RN. It is defined as follows: 

                                     …………………………. (3.1) 

                                                                           …………………………..(3.2) 

                                                                   …………………………(3.3) 

C > 0, a ∈ L1(D) thus that: 

is decreasing. With this hypothesis, we can give the existence of an 
0} for some function u ∈ . As 

this fact does not occur any more under the very general assumptions 
, making use of a γp−convergence on 

has a finite perimeter. For more informations the reader can refer to 

                                                                                                                                    ……………………………..(3.4) 

, 2025 



with uΩ solution of the problem (3.3) and p verifies the above hypothesis. Then the problem (3.1) admits a solution for all 
 

Proof. 
 

We start by showing the lower semi-continuity of the functional.
 

To do this, we set m = inf{G(Ω), Ω ∈ A(D)} and 
sequence (Ω௡௞

) contained in A(D) such that  G(Ω) → 
 

Consider un a solution of the following problem: 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

ିఓ∆௨౤ି(ఒାఓ)∇(ௗ௜௩௨౤ሬሬሬሬሬ⃗ )ାଷ௞௔∇ఏ౤ୀ ௙ ሬሬሬ⃗    ௜௡  Ω೙ 
ି∆ఏΩୀ௚ ௜௡ Ω೙

ങഇΩ೙
ങ೙

ୀℎ  ௢௡ డΩ೙

ങഇΩ೙
ങ೙

ୀ଴ ௢௡ డഘ೙

ങೠΩ೙
ങ೙

ୀ௩బ ௢௡ డΩ೙

ങೠΩ೙
ങ೙

ୀ଴ ௢௡ డഘ೙

                   

 

We defined the function 𝑢௡෦  by 

 ũ௡ = ൜
𝑢௡     𝑖𝑓  𝑥 ∈   Ω௡  

0     𝑖𝑓 𝑥 ∈ 𝐷 ∖ Ω௡ .
  

 Now, from the variational formula, we get 

𝜇∫
஽

∇𝑢௡෦. ∇𝑣 𝑑𝑥 − (𝜆 + 𝜇)∫
஽

∇(∇. 𝑢௡෦)𝑣 𝑑𝑥 − 3𝑘𝛼

 

Taking v = 𝑢௡෦ in (3.6), we get 

𝜇∫
஽

|∇𝑢௡෦|ଶ 𝑑𝑥 + 𝜇∫
஽

|∇. 𝑢௡෦|ଶ 𝑑𝑥 ≤ ||𝑓||ଶ   ||𝑢௡෦||ଶ

The solution 𝜃Ω೙ೖ
  of the Laplacian operator is also bounded in 

𝑀෩ depending on f, k, α and µ such that ||𝑢௡||ு೏೔ೡ
≤

 
The sequence 𝑢Ω೙ೖ

 is bounded in 𝐻ௗ௜௩(Ω,ோయ) (D), which is a reflexive space. Then there exists an extracted sequence of 
(𝑢Ω ೙ೖ

)௞ஹଵ and uΩ such that: 
 

 

 
In the same way, as  ||∇𝜃Ω ೙ೖ

||ଶ   is also bounded in 
holds 
 
(𝜃Ω ೙ೖ

)௞ஹଵ → 𝜃 Ω∈ L2(Ω).                                                                                                                            
 
Passing to the limit as k → ∞ and using weak convergence
 

 
Using Green formula in the first term of (3.11), we get
 

 

Since we have: 
 

൞

−𝜇∆𝑢Ω
∗ − (𝜆 + 𝜇)∇ቀ𝑑𝑖𝑣𝑢Ω

∗ሬሬሬሬሬ⃗ ቁ + 3𝑘𝛼∇𝜃Ω = 𝑓 𝑖𝑛 

𝜕𝑢Ω
∗

𝜕௡
= 𝑣 𝑜𝑛 𝜕𝐷.

 
And so, 𝑢Ω = 𝑢Ω

∗   is a solution of (3.3). Using the assumption that 
 
we have:  
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verifies the above hypothesis. Then the problem (3.1) admits a solution for all 

continuity of the functional. 

and uΩn = un. Since un is a solution of (3.3), then m > −∞, and thus there exists a minimizing 
Ω) → m. 

                                                                                                      … …

𝑘𝛼∫
஽

∇𝜃Ω𝑣 = ∫
஽

𝑓𝑣 𝑑𝑥.                                                                   

ଶ   + 3𝑘𝛼||∇𝜃Ω ೙ೖ
||ଶ   ||𝑢௡෦||ଶ   

                                                                                   

of the Laplacian operator is also bounded in H1(D)/R, then the term ||∇𝜃Ω ೙ೖ
||ଶ   is also finite. So there exists a constant 

≤  𝑀෩. 

which is a reflexive space. Then there exists an extracted sequence of 

                                                                           

.                                                                                

is also bounded in H1(Ω)/R, there exists also a subsequence (𝜃Ω ೙ೖ
)௞ஹଵ  such that the following convergence 

.                                                                                                                                              

and using weak convergence 

                                            

Using Green formula in the first term of (3.11), we get 

 

 𝐷
  

is a solution of (3.3). Using the assumption that p is lower semi-continuous,  
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verifies the above hypothesis. Then the problem (3.1) admits a solution for all K > 0. 

, and thus there exists a minimizing 

… … … … … … … . . … … … … . (3.5) 

                                                                   ……………………………(3.6)  

                                                                                   ………………………………………….(3.7) 

is also finite. So there exists a constant  

which is a reflexive space. Then there exists an extracted sequence of (𝑢Ω೙ೖ
) still noted by  

                       ………………………….(3.8) 

                                                                                …………………………….(3.9) 

such that the following convergence 

                  ………………………….. (3.10) 

                                            ………………………..(3.11) 

of an optimal shape for a thermoelasticity problem and shape derivative via the lagrange method 



 
So upon integrating, we obtain: 
 

 

 
By using the maximum principle, we have uΩ2 ≥ 0 
also have the assumption that p(x,y,z) is decreasing, thus: 
 
3.2. Existence of a solution by the -cone property
 

Theorem 3.2  Let    be a set open bounded domain of 
 

. 
 
Proof. 
 
At first, we will find a lower bound for the functional 
there exists a constant M such that 0 ≤ J(Ω) ≤ M. 
 
Then, the functional J is bounded and there exists a minimizing sequence 
 
As Ωn ∈ Oad  and  Oad   is closed to O, then according to a compactness theorem, there exists an open set 
such that the following convergence holds: 
 
𝑢Ω೙ೖ

𝐻
→

 𝑢Ω,              𝜒Ω೙ೖ
 𝐿ଵ𝑝. 𝑝
ሱ⎯⎯⎯ሮ

𝜒Ω 

 
Ω௡௞

𝐻
→

Ω,            𝜕Ω௡௞
𝐻
→

𝜕Ω. 

 
Now, from the variational formula, we get 
 

 
So, G(Ω) ≤ lim k →∞ inf G(Ω𝑛 𝑘

). Therefore, the functional 
will show that G is decreasing with respect to inclusion. Let 

    

⎩
⎪
⎪
⎨

⎪
⎪
⎧

−𝜇 ∆𝑢1−(𝜆+𝜇)∇(𝑑𝑖𝑣𝑢1ሬሬሬሬ⃗ )+3𝑘𝑎∇𝜃Ω1= 𝑓 ሬሬሬ⃗    𝑖𝑛  Ω1 
−∆𝜃Ω=𝑔 𝑖𝑛 Ω1

𝜕 𝜃 Ω1

𝜕 𝑛
=ℎ  𝑜𝑛 𝜕Ω1

𝜕 𝜃 Ω1

𝜕 𝑛
=0 𝑜𝑛 𝜕 𝜔1

𝜕 𝑢 Ω1

𝜕 𝑛
=𝑣0 𝑜𝑛 𝜕Ω1

𝜕 𝑢 Ω1

𝜕 𝑛
=0 𝑜𝑛 𝜕𝜔 1.

                             

                                

and 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧−𝜇∆𝑢2 − (𝜆 + 𝜇)∇(𝑑𝑖𝑣𝑢2ሬሬሬሬ⃗ ) + 3𝑘𝑎∇𝜃Ω2

=  𝑓 ሬሬሬ⃗    

−∆𝜃Ω = 𝑔 𝑖𝑛 Ω2
𝜕 𝜃Ω2

𝜕 𝑛
= ℎ  𝑜𝑛 𝜕Ω2

𝜕𝜃 Ω2

𝜕 𝑛
= 0 𝑜𝑛 𝜕𝜔2

𝜕 𝑢 Ω2

𝜕 𝑛
= 𝑣0 𝑜𝑛 𝜕Ω2

𝜕 𝑢 Ω2

𝜕 𝑛
= 0 𝑜𝑛 𝜕𝜔2

we consider uΩ2 − uΩ1 and we get: 
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧−𝜇∆൫𝑢Ω2

− 𝑢Ω1
൯ − (𝜆 + 𝜇)∇𝑑𝑖𝑣൫𝑢Ω2

− 𝑢Ω1
൯ +

−∆൫𝜃Ω2
− 𝜃Ω

𝜕 ൫𝜃Ω2−𝜃Ω1൯

𝜕 𝑛
=

𝜕 ൫𝜃Ω2−𝜃Ω1൯

𝜕 𝑛
=

𝜕൫𝑢Ω2−𝑢Ω1൯

𝜕 𝑛
=

𝜕൫𝑢Ω2−𝑢Ω1൯

𝜕 𝑛
=
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. 

≥ 0 in Ω2, and therefore, by the same principle, we also have (u
is decreasing, thus: p(x,uΩ1,∇uΩ1) ≥ p(x,uΩ2,∇uΩ2). Thus we can conclude that 

cone property 

be a set open bounded domain of Rn. Then there exists on open set Ω ∈ Oad  

At first, we will find a lower bound for the functional J(Ω), Ω ∈ Oad. Because of the fact that u0 ∈ L2(Ω) and 
 

is bounded and there exists a minimizing sequence Ωn ∈ Oad   such that J(Ωn) →m = inf 

en according to a compactness theorem, there exists an open set Ω ∈

 

Therefore, the functional G is lower semi-continuous with respect to the topology of 
inclusion. Let Ω1 and Ω2 be two subsets of R3 such that Ω1 ⊂ Ω2

                                                                                                                  

 𝑖𝑛  Ω2 

                                                                                                 

         

൯ + 3𝑘𝛼∇൫𝜃Ω2
− 𝜃Ω1

൯ = 𝑓 ൫𝑢Ω2
൯ − 𝑓൫𝑢Ω1

൯ 𝑖𝑛  Ω1 

Ω1
൯ = 0 𝑖𝑛  Ω1

൯
= 0 𝑖𝑛  𝜕Ω1 

൯
−

𝜕 𝜃Ω1

𝜕 𝑛
 𝑜𝑛 𝜕𝜔1

൯
= 0 𝑜𝑛  𝜕Ω1 

൯
−

𝜕 𝑢Ω2

𝜕 𝑛
 𝑜𝑛 𝜕𝜔1

.
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uΩ2 − uΩ1)(x) ≥ 0 for all x ∈ Ω1. We 
Thus we can conclude that G(Ω1) ≥ G(Ω2). 

  satisfying 

and uΩ is solution the problem (2.13), 

= inf J(Ω). 

∈ Oad   and a subsequence Ω௡௞  of Ωn  

continuous with respect to the topology of γ-convergence. Next, we 
2.    

                                                                                  ……………………………..(3.12) 

       … … … … … … … … … … … . (3.13)

                                                   (3.14) 

, 2025 



𝜇∫Ω∇𝑢Ω. ∇𝑣 𝑑𝑥 − (𝜆 + 𝜇)∫Ω∇(∇. 𝑢Ω)𝑣 𝑑𝑥 − 3𝑘𝛼

 
Hence in Ω௡௞

 we get: 
 
𝜇∫Ω೙ೖ

∇𝑢Ω೙ೖ
. ∇𝑣 𝑑𝑥 − (𝜆 + 𝜇)∫Ω೙ೖ

∇൫∇. 𝑢Ω೙ೖ
൯𝑣 𝑑𝑥

 
Taking v = 𝑢Ω೙ೖ

 in (3.16), we get 
 

𝜇∫Ω೙ೖ
ห∇𝑢Ω೙ೖ

ห
ଶ

𝑑𝑥 + (𝜆 + 𝜇)∫Ω೙ೖ
ห∇. 𝑢Ω೙ೖ

ห
ଶ

𝑑𝑥 −

 
 

𝜇∫
ୈ

𝜒Ω೙ೖ
ห∇𝑢Ω೙ೖ

ห
ଶ
+ 𝜇∫

ୈ
𝜒Ω೙ೖ

 ห∇. 𝑢Ω೙ೖ
ห

ଶ
𝑑𝑥 ≤ ∫

஽
𝜒

 

≤ ห|𝑓|ห
ଶ   

ቚห𝑢Ω೙ೖ
หቚ

ଶ   
+ 3𝑘𝛼 ቚห∇𝜃Ω ೙ೖ

หቚ
ଶ   

ቚห∇𝑢Ω ೙ೖ
หቚ

 
From (3.17), 
 
as 𝑢Ω೙ೖ  is bounded in D, we have 
 
The solution 𝜃Ω ೙ೖ of the Laplacian operator is also bounded i
𝑀෩ depending on f, k,α and µ such that 
 

 
From (3.16), we get 
 

 
Passing to the limit as k  →∞ and using weak convergence (3.19) and (3.20), we get the follo
 

giving the following weak formulation 

 
Using Green formula in the first term of (3.22), we get
 

 
since we have: 

 
Finally by taking 𝜑 = 𝑢Ω೙ೖ

 in (3.21), and 𝜑 = uΩ in (3.22) we have:
 

𝑙𝑖𝑚 ቀ𝜇∫Ω೙ೖ
ห∇𝑢Ω೙ೖ

ห
ଶ

𝑑𝑥 − (𝜆 + 𝜇)∫Ω೙ೖ
∇(∇. 𝑢Ω೙ೖ

)
 

= 𝑙𝑖𝑚∫Ω೙ೖ
𝑓𝑢Ω೙ೖ

𝑑𝑥 = ∫Ωf(𝓍)𝑢Ω
∗  

 

= 𝜇∫Ω
|∇𝑢Ω

∗ |ଶ𝑑𝑥 − (𝜆 + 𝜇)∫Ω∇(∇. 𝑢Ω
∗ )𝑢Ω

∗ 𝑑𝑥 − 3𝑘𝛼
 

∫Ω೙ೖ
ห∇𝑢Ω೙ೖ

− ∇௨Ω
ห

ଶ
𝑑𝑥 =∫Ω೙ೖ

ห∇𝑢Ω೙ೖ
ห

ଶ
𝑑𝑥 − 2∫Ω

 

||𝑢Ω𝑛 𝑘
||𝐻𝑑𝑖 𝑣

  ≤ 𝑀෩. 
 
The sequence 𝑢Ω𝑛 𝑘

 is bounded in  𝐻𝑑𝑖𝑣 (D), which is a reflexive space. Then there exists an extracted sequence of 
(∇𝑢Ω𝑛 𝑘

)𝑘≥1 and uΩ such that: if k  → ∞, 
 
𝑢Ω𝑛 𝑘

 → 𝑢 ∗∈ 𝐿2 (Ω𝑛 𝑘
), (∇𝑢Ω𝑛 𝑘

)𝑘 ≥1 → ∇ 𝑢 ∗∈ 𝐿2 (Ω)

 
In the same way, as ||∇𝜃Ω 𝑛 𝑘

||2    is also bounded in 
(∇𝜃Ω 𝑛 𝑘

)𝑘≥1 →∇θΩ ∈ L2 (Ω).                                                                                    
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𝑘𝛼∫Ω∇𝜃Ω𝑣 𝑑𝑥 = ∫Ω𝑓𝑣 𝑑𝑥.                                           …………………………………………. 

൯ 𝑑𝑥 − 3𝑘𝛼∫Ω೙ೖ
∇𝜃Ω೙ೖ

𝑣 𝑑𝑥 = ∫Ω೙ೖ
𝑓𝑣 𝑑𝑥                       ……………………………………..

− 3𝑘𝛼∫Ω೙ೖ
∇𝜃Ω೙ೖ

𝑢Ω೙ೖ
= ∫Ω೙ೖ

𝑓𝑢Ω೙ೖ
𝑑𝑥                               … …

𝜒Ω೙ೖ
 𝑓𝑢Ω೙ೖ

𝑑𝑥 + 3𝑘𝛼∫
ୈ

𝜒Ω೙ೖ
 ∇𝜃Ω೙ೖ

𝑢Ω೙ೖ
𝑑𝑥 

หቚ
ଶ   

.                                                                                             

of the Laplacian operator is also bounded in H1(D)/R, then the term ||∇𝜃Ω ೙ೖ
||ଶ   

 is also finite, so there exists a constant 

and using weak convergence (3.19) and (3.20), we get the following formulation

                        

             

Using Green formula in the first term of (3.22), we get 

. 

 

in (3.22) we have: 

)𝑢Ω೙ೖ
𝑑𝑥 − 3𝑘𝛼∫Ω೙ೖ

∇𝜃Ω೙ೖ
𝑢Ω೙ೖ

ቁ 

𝑘𝛼∫Ω∇𝜃Ω𝑢Ω
∗ 𝑑𝑥 

Ω೙ೖ
∇𝑢Ω೙ೖ

∇௨Ω
+ ∫Ω೙ೖ

ห∇௨Ω
ห

ଶ
𝑑𝑥. 

which is a reflexive space. Then there exists an extracted sequence of 

(Ω), (div 𝑢Ω𝑛 𝑘
)𝑘≥1→div 𝑢 ∗ ∈ 𝐿2 (Ω)                                         

is also bounded in H1(Ω)/R, there exists also a subsequence (𝜃Ω 𝑛 𝑘
) such that the following convergence holds

.                                                                                                                                    

of an optimal shape for a thermoelasticity problem and shape derivative via the lagrange method

…………………………………………. (3.15) 

……………………………………..(3.16) 

… … … … … … … … … … … … …(3.17)  

                                                                                             ……………………………(3.18) 

is also finite, so there exists a constant 

 

 

wing formulation 

                        ………………………….(3.21) 

             ………………………….(3.22) 

which is a reflexive space. Then there exists an extracted sequence of (𝑢Ω𝑛 𝑘
) still denoted by 

                                         ……………………………(3.19) 

such that the following convergence holds 
                                                ………………………………..(3.20)

of an optimal shape for a thermoelasticity problem and shape derivative via the lagrange method 



Then taking the limit in the right hand side after equality, as k  → ∞ 
 

∫Ω೙ೖ
ห∇𝑢Ω೙ೖ

− ∇௨Ω
ห

ଶ
𝑑𝑥 =∫Ω೙ೖ

ห∇𝑢Ω೙ೖ
ห

ଶ
𝑑𝑥 − 2∫Ω೙ೖ

∇𝑢Ω೙ೖ
∇௨Ω

+ ∫Ω೙ೖ
ห∇௨Ω

ห
ଶ

𝑑𝑥 = 0. 

 
Since 

∫Ω೙ೖ
ห∇𝑢Ω೙ೖ

− ∇௨Ω
ห

ଶ
𝑑𝑥 =0. 

 
And we show 
 

∫Ω೙ೖ
ห∇൫∇. 𝑢Ω೙ೖ

൯ − ∇(∇. 𝑢Ω)𝑢Ωห
ଶ

𝑑𝑥 = 0 

 ∫Ω೙ೖ
𝑓(𝑢Ω೙ೖ

− 𝑢Ω) = 0      and    ∫Ω೙ೖ
𝑢Ω೙ೖ

(∇𝜃Ω೙ೖ
− ∇𝜃Ω) = 0. 

 
We have:                                    
 

 𝑢Ω೙ೖ
(𝑥)

       ௅మ      
ሱ⎯⎯⎯⎯ሮ 𝑢Ω(𝑥) 

 

∇൫∇. 𝑢Ω೙ೖ
൯𝑢Ω೙ೖ

       𝐿ଶ      
ሱ⎯⎯⎯⎯⎯⎯ሮ

∇(∇.𝑢Ω)𝑢Ω 

 
∇𝜃Ω೙ೖ

       𝐿ଶ      
ሱ⎯⎯⎯⎯⎯⎯ሮ

∇𝜃Ω. 

 
Since: 
 

𝐽(Ω௡௞) → 𝐽(Ω). 
 
We prove that Ω∗ is a minimizer of J. 
 

 
 
In this subsection, we will study a problem of the type 
 
min {F(Ω) : Ω ∈ A,|Ω| ≤ c},                                                                                                                           ……………………………………….(3.23) 
 
with F : A(D) → R−  a constrained shape functional of a parabolic boundary problem with uΩ as its solution and is defined by 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧−𝜇∆𝑢Ω − (𝜆 + 𝜇)∇(𝑑𝑖𝑣𝑢Ωሬሬሬሬሬ⃗ ) + 3𝑘𝑎∇𝜃Ω =  𝑓 ሬሬሬ⃗    𝑖𝑛  Ω 

−∆𝜃Ω = 𝑔 𝑖𝑛 Ω
డఏΩ

డ೙
= ℎ  𝑜𝑛 𝜕Ω

డఏΩ

డ೙
= 0 𝑜𝑛 𝜕ఠ

డೠΩ

డ೙
= 𝑣଴ 𝑜𝑛 𝜕Ω

డೠΩ

డ೙
= 0 𝑜𝑛 𝜕ఠ.

                                                                                              … … … … … … … … … … … … … . . (3.24)

  

  

 
Theorem 3.3 Let F: A(D) → (−∞,+∞] be a shape functional that is lower γ − semi − continuous weak. Then the following problem 
 
min{F(Ω) : Ω ∈ A(D)}                                                                                                                                    …………………………………(3.26) 
 
Has a solution. 
 
Proof. 
 
We start by showing the lower semi-continuity of the functional. To do this, we set m = inf{G(Ω), Ω ∈ A(D)} and uΩn = un. Since un  is a solution 
of (3.25), then m > −∞, and thus there exists a minimizing sequence (Ω௡௞

) contained in A(D) such that G(Ω) → m. 
 
Consider un as a solution of the following problem: 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

ିఓ∆௨౤ି(ఒାఓ)∇(ௗ௜௩௨౤ሬሬሬሬሬ⃗ )ାଷ௞௔∇ఏ౤ୀ ௙ ሬሬሬ⃗    ௜௡  Ω೙ 
ି∆ఏΩ೙ୀ௚ ௜௡ Ω೙

ങഇΩ೙
ങ೙

ୀℎ  ௢௡ డΩ೙

ങഇΩ೙
ങ೙

ୀ଴ ௢௡ డഘ೙

ങೠΩ೙
ങ೙

ୀ௩బ ௢௡ డΩ೙

ങೠΩ೙
ങ೙

ୀ଴ ௢௡ డഘ೙.

                                                                                                                  … … … … … … … … … … … … … … … (3.26)     

Existence of a solution by compactness of set 
 
Here we will weaken the assumptions but nevertheless the functional J remains lower γ−semi continuous for the topology of γ−convergence and 
we study the compactness of A(D) for this convergence. The idea is to do a penalization of the functional J. This gives us 
F(Ω) = J(Ω) + α1[|Ω| − c]+ where α1 ∈ R+ is a penalization factor and 𝐽(Ω) = β∫Ω

|∆𝑢Ω|2 𝑑𝑥 + 𝛼∫Ω
|𝑢Ω − 𝑢0|2 𝑑𝑥. 
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We defined the function 𝑢௡෦ by 
 

𝑢௡෦  = ൜
𝑢௡      𝑖𝑓  𝑥 ∈   Ω௡  

0     𝑖𝑓 𝑥 ∈ 𝐷 ∖ Ω௡ .
  

 
Now, from the variational formula, we get 
 

𝜇∫
஽

∇𝑢௡෦. ∇𝑣 𝑑𝑥 − (𝜆 + 𝜇)∫
஽

∇(∇. 𝑢௡෦)𝑣 𝑑𝑥 − 3𝑘𝛼

 
Taking v = 𝑢௡෦ in (3.27), we get 
 
𝜇∫

஽
|∇𝑢௡෦|ଶ 𝑑𝑥 + 𝜇∫

஽
|∇. 𝑢௡෦|ଶ 𝑑𝑥 ≤ ||𝑓||ଶ   ||𝑢௡෦||ଶ

 
The solution 𝜃Ω೙ೖ

 of the Laplacian operator is also bounded in 

depending on f, k, α and µ such that 
 
||𝑢Ω೙ೖ

||ு೏೔ೡ
  ≤ 𝑀෩. 

 
The sequence 𝑢Ω೙ೖ

 is bounded in  𝐻ௗ௜௩ (D), which is a reflexive space. Then there exists an extracted sequence of 
(𝑢Ω೙ೖ

)௞ஹଵ  and uΩ such that: 
 

 

 
In the same way, as ||∇𝜃Ω ೙ೖ

||ଶ   
 is also bounded in 

 
(∇𝜃Ω ೙ೖ

)௞ஹଵ → ∇θΩ ∈ L2(Ω).                                                                 
 
Passing to the limit as k −→ ∞ and using weak convergence
 

 

Using Green formula in the first term of (3.32), we get
 

 
Since we have: 

൞

−𝜇∆𝑢Ω
∗ − (𝜆 + 𝜇)∇ቀ𝑑𝑖𝑣𝑢Ω

∗ሬሬሬሬሬ⃗ ቁ + 3𝑘𝛼∇𝜃Ω = 𝑓 𝑖𝑛 

𝜕𝑢Ω
∗

𝜕௡
= 𝑣 𝑜𝑛 𝜕𝐷.

 
Since 𝑢௡෦ is bounded in  𝐻ௗ௜௩ (D) there exist 𝑀෩> 0 

Using Green formula in the first term of (3.32), we get
 

 
Since we have: 

൞
−𝜇∆𝑢Ω

∗ − (𝜆 + 𝜇)∇ቀ𝑑𝑖𝑣𝑢Ω
∗ሬሬሬሬሬ⃗ ቁ + 3𝑘𝛼∇𝜃Ω = 𝑓 𝑖𝑛

𝜕𝑢Ω
∗

𝜕𝑛
= 𝑣 𝑜𝑛 𝜕𝐷.

 

Since 𝑢𝑛෦ is bounded in  𝐻𝑑𝑖𝑣 (D) there exist 𝑀෩> 0 
 
||𝑢𝑛෦||𝐻𝑑𝑖𝑣

  ≤ 𝑀෩. 
 

 

On the other hand, the lower semi-continuity of the Lebesgue measure leads
 

𝛼∫Ω|𝑢Ω
∗ − 𝑢0|2 𝑑𝑥 + 𝛽∫Ω|∇𝑢Ω

∗ |2 𝑑𝑥 + 𝛼1(𝑚𝐿 (Ω
 

Then we have:  
 

𝐹(Ω)  ≤  lim
𝑘→∞

inf 𝐹(Ω𝑛𝑘
). 
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𝑘𝛼∫
஽

∇𝜃Ω𝑣 = ∫
஽

𝑓𝑣 𝑑𝑥.                                               ………………………………………(3.27)

ଶ   + 3𝑘𝛼||∇𝜃Ω ೙ೖ
||ଶ   ||𝑢௡෦||ଶ                                                   ………………………………(3.28)

of the Laplacian operator is also bounded in H1(D)/R, then the term  ||∇𝜃Ω ೙ೖ
||ଶ     is also finite. So there exists a constant 

which is a reflexive space. Then there exists an extracted sequence of 

                                                                                

.                                                                                       

is also bounded in H1(Ω)/R, there exists also a subsequence (𝜃Ω ೙ೖ
) such that the following convergence holds

.                                                                                                                                    

and using weak convergence 

                                                

f (3.32), we get 

 

 𝐷
  

෩ 0 thus that  

Using Green formula in the first term of (3.32), we get 

 

𝑖𝑛 𝐷

 

෩ 0 thus that  

 

continuity of the Lebesgue measure leads 

(Ω) − c)  ≤ lim
𝑘→∞

𝑖𝑛𝑓 ቂ𝛼∫Ωห𝑢Ω𝑛𝑘
− 𝑢0ห

2
𝑑𝑥 + 𝛽∫Ωห∇𝑢Ω𝑛 𝑘

ห
2
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………………………………………(3.27) 

………………………………(3.28) 

is also finite. So there exists a constant 𝑀෩   

which is a reflexive space. Then there exists an extracted sequence of (𝑢Ω೙ೖ
) still noted by 

                                                                                ……………………………..(3.29) 

                                                                                       ………………………………...(3.30) 

such that the following convergence holds 

                                                                   ………………………………..(3.31) 

                                                ……………………………(3.32) 
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||𝑢௡෦||ு೏೔ೡ

  ≤ 𝑀෩. 
 

 

On the other hand, the lower semi-continuity of the Lebesgue measure leads
 

𝛼∫Ω
|𝑢Ω

∗ − 𝑢଴|ଶ 𝑑𝑥 + 𝛽∫Ω
|∇𝑢Ω

∗ |ଶ 𝑑𝑥 + 𝛼ଵ(𝑚௅(Ω)

 
Then we have:  
 

𝐹(Ω)  ≤  lim
௞→∞

inf 𝐹(Ω௡௞
). 

 

4. Shape derivative result via Lagrange method
 
The objective of this section to calculate the shape derive of the functional (2.8). Before going
as useful for the main result. The idea is to use the celebrated method of Hadamard for the shape functional that we consider
introduced by Hadamard in [9] and many other authors [22]. 
 
4.1. Shape optimization 

 
Let Ω ⊂ RN be a bounded open set of class C2. For  t
properties holds: 
 

 
Let Ωt = (Id + V )(Ω) be a bounded open set of class 
We have the following definition: 
 
Definition 4.1 One function J(Ω) of the domain is said to be shape differentiabl
differentiable at t = 0. The corresponding Frechet derivative (or differential) is denoted by 
 

J(Ωt) = J(Ω) + tDJ(Ω,V ) + o(t). 
 

In the following, consider also then functional defined in 
 

  𝐽(Ω𝑡) = β∫Ωభ
ห∇𝑢Ωభ

ห
ଶ

𝑑𝑥 + 𝛼∫Ωభ
ห𝑢Ωభ

− 𝑢଴ห
ଶ

𝑑𝑥

 
where ut be the solution to the following problem 
 

⎩
⎪
⎨

⎪
⎧

ିఓ∆௨Ωభି(ఒାఓ)∇൫ௗ௜௩ Ωభ
ሬሬሬሬሬሬሬሬ⃗ ൯ାଷ௞௔∇ఏΩభୀ ௙ ሬሬሬ⃗    ௜௡  Ωభ

ି∆ఏΩభୀ௚ ௜௡ Ωభ

డఏΩభ

డ೙
= ℎ  𝑜𝑛 𝜕Ωଵ

డೠΩభ

డ೙
= 𝑣 𝑜𝑛 𝜕Ωଵ.

               

 
We look, in this section for the shape derivative of the functional 
general, the definition of an appropriate derivation for the mapping 

derivative  linking with the Laplacian derivative by
 
𝑢′(Ω, V) = 𝑢̇(Ω) − ∇𝑢. V. 
 
For the definition of the Laplacian and eulerian derivative, we refer to [1], [23]. The following result is devoted to the shape derivative of t
functional. 
 
Theorem 3.1 Lets Ω a class domain C1(ℝே) and V a class vector field 
 
Let 𝐹𝜖𝐶ଵ൫(0, 𝜖)𝐶଴(Ω௧

തതതത)൯ ∩ 𝐶଴൫(0, ∈), 𝐶ଵ(Ω௧
തതതത)൯. The function defined by

 

𝐽ଵ(∈) = ∫ 𝐹(∈, 𝑥)𝑑𝑥
Ω೟

 is  

differentiable and its derivative is given by : 𝐷𝐽ଵ(Ω

 

𝐷𝐽ଵ(Ω௧ , 𝑉) = ∫
డ

డ∈
𝐹(∈, 𝑥) + ∫ 𝐹(∈, 𝜎)𝑉. 𝑛𝑑𝜎

డΩ∈Ω∈

 
Proof. See [1] 
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4. Shape derivative result via Lagrange method 

The objective of this section to calculate the shape derive of the functional (2.8). Before going further we first prove the following results which 
as useful for the main result. The idea is to use the celebrated method of Hadamard for the shape functional that we consider
introduced by Hadamard in [9] and many other authors [22]. In there papers, the notions of shape derivative is given.

For  t ≥ 0, let Ωt = φt(Ω), where for all t, φt associated for 

 

be a bounded open set of class C2. For  t ≥ 0, very small, and V ∈ C1 ∩ W1,∞(R2). Let us consider also, the function 

of the domain is said to be shape differentiable at Ω if the mapping t 
The corresponding Frechet derivative (or differential) is denoted by DJ(Ω,V ) and the following expansion holds:

also then functional defined in Ωt, by 

𝑑𝑥                                                                                                   

 

                                                                                                               

We look, in this section for the shape derivative of the functional J(Ω). The key point in the calculation of the shape derivative
general, the definition of an appropriate derivation for the mapping Ω → uΩ. This mapping has a Lagrangian derivative 

linking with the Laplacian derivative by 

of the Laplacian and eulerian derivative, we refer to [1], [23]. The following result is devoted to the shape derivative of t

and V a class vector field C1. 

ത ൯ The function defined by 

(Ω௧ , 𝑉) = න
డ

డ∈
𝐹(∈, 𝑥) + 𝑑𝑖𝑣𝐹(∈, 𝑥)𝑉(𝑥))𝑑𝑥    (𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑

Ω∈

𝑛𝑑𝜎.                                                  
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further we first prove the following results which 
as useful for the main result. The idea is to use the celebrated method of Hadamard for the shape functional that we considered. This method was 

In there papers, the notions of shape derivative is given. 

associated for V is diffeomorphism of R2. These 

Let us consider also, the function J in Ωt. 

t → J(Ωt) from R into R is Frechet 
and the following expansion holds: 

                                                                                                   …………………………...(4.1) 

      … … … … … … … … … … … …(4.2) 

The key point in the calculation of the shape derivative DJ(Ω,V ) is in 
This mapping has a Lagrangian derivative u˙Ω and an Eulerian 

of the Laplacian and eulerian derivative, we refer to [1], [23]. The following result is devoted to the shape derivative of the 
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Theorem 4.1 Let Ω be a domain of class C1(RN) 
and the shape derivative is given by 
 

𝐷𝐽(Ω; 𝑉 ) = 2β න |∇𝑢 Ω |. ∇𝑢′𝑑𝑥 + 2𝛼∫
 Ω 

|𝑢 Ω −
Ω

 

where 𝑢ᇱ
Ω, the shape derivative verifies 

 

  ൞

−𝜇∆𝑢ᇱ
Ω − (𝜆 + 𝜇)∇(∇. 𝑢ᇱ

Ω) − 3𝑘𝛼∇𝜃′Ωభ
=  0 

∆𝜃ᇱ = 0 𝑖𝑛 Ω

𝑢ᇱ = −∇𝑢. 𝑉 = −
డ௨

డ௡
𝑉. 𝑛 𝑜𝑛 𝜕Ω.

 
Proof. In Ωt, the function J is written as follows: 
 
 𝐽(Ω௧) = β∫

Ω೟
|∇𝑢Ω|ଶ 𝑑𝑥 + 𝛼∫

Ω೟
|𝑢Ω − 𝑢଴|ଶ 𝑑𝑥.   

 
The function J is differentiable and using Hadamard Formula we get
 
𝐷𝐽( Ω , V) = 2β∫

 Ω 
|∇𝑢 Ω |∇𝑢′ Ω 𝑑𝑥 + 2𝛼∫

 Ω 
|𝑢 Ω 

 

for any V vector field with 𝑢ᇱ
Ω the shape derivative of 

follows, we look for the equation verifies by  𝑢ᇱ
Ω. We give first the variational formula in 

(Ω), and integrating, we get 
 

 
For t quite small, we can differentiate (4.4) with (v 
 
𝜇∫

Ω
∇𝑢′Ω∇𝜑𝑑𝑥 − (𝜆 + 𝜇)∫

Ω
∇(∇. 𝑢′Ω)𝜑𝑑𝑥 + 𝜇∫

డΩ

−(𝜆 + 𝜇)∫
డΩ

∇(∇. 𝑢Ω)𝜑𝑉. 𝑛𝑔dσ − 3𝑘𝛼∫
డΩ

∇𝜃Ω𝜑𝑉

 
If 𝜑 is null on the boundary (on a neighborhood of the edge), we have:
 

 
And we have 
 

 
So (4.5) becomes 
 

 
So 
 

 
And we get: 
 

 
in the sense of distributions. 
 
Let us recover the condition at the boundary, using the equality:
 
𝑢ᇱ(Ω, V) = 𝑢̇(Ω) − ∇𝑢. V 
 
The function ut o (Id + tV )  defined on the domain fix 
 

. 
 
In other words,  for any t, therefore, according to the equality:
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− 𝑢଴|𝑢′ Ω 𝑑𝑥 + 𝛼∫
డ Ω 

|𝑢 Ω − 𝑢଴|ଶ𝑉. 𝑛dσ + 𝛽∫
డ Ω 

|∇𝑢 Ω |
ଶ𝑉.

   𝑖𝑛  Ω

                                                                                      

 

is differentiable and using Hadamard Formula we get 

− 𝑢଴|𝑢′ Ω 𝑑𝑥 + 𝛼∫
డ Ω 

|𝑢 Ω − 𝑢଴|ଶ𝑉. 𝑛dσ + 𝛽∫
డ Ω 

|∇𝑢 Ω |
ଶ𝑉

the shape derivative of ut. We recall that, the mapping Ωt → 𝑢Ω೟
 has an Eulerian derivative, and in what 

. We give first the variational formula in Ωt. Multiplying the first equation of (4.2) by 

                                

v = 𝜑) fixed. By applying the formula of (Hadamard) we have:

Ω
∇𝑢Ω∇𝜑𝑉. 𝑛dσ − 3𝑘𝛼∫

Ω
∇𝜃′Ω𝜑𝑑𝑥  

𝜑𝑉. 𝑛dσ = ∫
డΩ

𝑓𝜑𝑉. 𝑛dσ. 

is null on the boundary (on a neighborhood of the edge), we have: 

                                                                            

                                              

. 

. 

 

Let us recover the condition at the boundary, using the equality: 

defined on the domain fix Ω disappears on the boundary of Ω for any t. We can therefore deduce:

for any t, therefore, according to the equality: 
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solution (4.2). Then J(Ωt) is differentiable 

𝑛dσ 

                                                                                                     ……………………(4.3) 

𝑉. 𝑛dσ 

has an Eulerian derivative, and in what 

Multiplying the first equation of (4.2) by v ∈ 𝐻ௗ௜௩ 

              …………………………….(4.4) 

fixed. By applying the formula of (Hadamard) we have: 

                                                                            ……………………………..(4.5) 

for any t. We can therefore deduce: 
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𝑢ᇱ(Ω, V) = 𝑢̇(Ω) − ∇𝑢. V 
 

𝑢ᇱsatisfied 
 

𝑢ᇱ = −∇𝑢. 𝑉 = −
డ௨

డ௡
𝑉. 𝑛  𝑜𝑛 𝜕Ω. 

 
The last egality comes from the fact that the gradient of 
 
4.2. Optimal conditions 

 
Theorem 4.2 Let Ω be the solution of the shape optimization problem 
(2.6). Then, there exists a Lagrange multiplier λ = 
 
k (∂n 𝑢 Ω )

2 + λ(Ω) = 0,                                                                                                                             
 
where k is a constant. 
 
Proof. Assume that Ω is a minimizer of J under the contraint 
λ such that for any group of diffeomorphisms (φt)t
 

        for  t = 0. 
 
Assume that (φt)t∈R is the flow associated with
 
Then 
 

 
 
The theorem of Lagrange then implies that there exists a constant 
 

  
 
Thus 

 
or 
 

 
 

or again 
 

. 
 
This gives us 
 

. 
 
Since V is arbitrary, we infer that ∂nuΩ is constant on 
 

5. CONCLUSION AND EXTENSIONS
 
In this paper, we have studied a thermoelasticity problem using optimization
convergence with compactness of set, the monotonicity of a functional and in the other hand we using the epsilon
established the shape derivative using Lagrange met
problem. 
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