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1. INTRODUCTION

In this paper we deal with existence, form derivation and topological derivation results for a linear thermoelasticity problem. We note in the
literature see [26], [27], [28], [29], [30] that thermoelasticity problems have many applications in solar energy, industry and renewable energies
etc. This leads us to focus on existence and derivation results, which will be followed by applications in the above-mentioned fields in our future
work. Domain optimization is used today in many industrial environments, Airbus for the reduction of structures, the improvement of resistance
to vibrations and many other areas of physics. In [10], the authors address a shape optimization problem for a thermoelasticity model with
uncertainties in the Robin boundary condition. The problem was formulated as the minimization of the volume of the body under an inequality
constraint on the expectation of. They derived analytical expressions of the shape functional to obtain the shape derivative via second order
correlations. An efficient numerical method based on the low rank approximation was proposed. The solution of the optimization problem was
implemented numerically via the level method. The isogeometric approach has been adopted in research areas where sophisticated geometric
representations are demanding, such as shell analysis [14, 16], fluid-structure interaction [12, 15], robust mesh [17], and shape design
optimization [6,7]. With respect with thermoelastic behavior, the thermomechanical contact of the mortar problem [5, 6] and material
distribution of functionally graded structures [9, 10], were studied using the isogeometric approach. For more information see [20, 23]. The
paper in organized as follows: In the first section we give the introduction. In the second part we give some preliminaries results related to weak
solution existence results for the studied linear thermoelasticity problem. In section 3, we study some existence results of shape optimization
with constraint partial differential equations coming from the model in the stationary case. The section 4 is devoted to shape optimization using
Lagrange method and the optimal condition is geven. And in the section 5, we give the conclusion and some extensions.

2. PRELIMINARIES RESULTS

Let Q be a bounded domain in R?, @ a subset of Q and We (‘TO) = To + €W, small set of size thus that@e C 2 fora given x € Q and
o C Q. Defining the characteristic function

Let Q be a bounded domain in R?, @ a subset of  and We (IO) = To + €W, small set of size thus that@We C €2 fora given x, € Q and
o C Q. Defining the characteristic function 1g_(x,) = 1q — 14 (x,) the perforated domain is given, following [2, 3, 5] as follows

Q.= Q\(De. We define

Hymors) = {uge(L?(Q))3, div(ug)el?(Q); dpug = 0,uqeHs (). 2.1
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Considering a shape function J defined by

JO@ =afglug—uol?dx + B [V "dx, s 2.2)

where U € H g;,(q %) 1S solution to the variational problem

u fQVuQ. Vodx — (A + u)fQV(V. ugvdx — 3ka'fQV69v dx = fgfv dx (2.3)
and
JoV6oVedx = [ogpdx 2.4)

for all v € H g5 g3y and ¢ € D(Q) for some given functions f € H'(R®), g € H'(Q). In the case where div ug= 0 in Q, (2.3) is reduced to the
following variational problem

quVuQ. Vudx = fgfv dx + 3kanVGQU dxX e (2.5)

with uq_is solution to:

—p.AuQE,(A+u)divrﬂg)+3kaV99= f in Q.
—Abg, =g in Q.
2600,
on

LR
Begono,, s @.7)

=h on 0Q¢

auﬂe
n

=vy 0n 0Q¢

3uQE

=00n 0,

n
Where ug_ is solution to the variational problem

" Vug, .Vvde — (A + p) / V(V - ug, )vdr — 3ka / Voo, v = Sfvdx
Ja, 9

J Qe J Qe

and

VOQEVgpd;r:/ gpdx.

e (o
Existence of solution to (2.7)
We consider the following note-by-(2.8) equation

—A({Ilgg =g in

&2 — hoon 00

in

dn

= () on Jw.

This will therefore lead us to study two boundary value problems separately. We will therefore seek a solution 6q of problem (2.8) that we will
inject into the following systems of equations to study the solution of the problem
(—,uAuQ — A+ WV(div ) + 3kaVog = f inQ
au,
{ ST VeOnIQ (2.9)
B
( a—“ =0onad,

n

We seek 0 belonging to a Hilbert space solution of (2.8). We give the definition of what we mean by classical solution of this problem.

Definition 2.1 Given a bounded open set Q of class C? of R" of boundary 4Q and 7 € C°(8Q.) We call a classical solution to: problem (2.8) all
function u of class CX(Q) verifying

It is therefore clear that there is no uniqueness in the solution to this Neumann problem. In fact, if u is a solution to this problem for any
connected component Q, of Q and any ¢ € R then u + ¢yqo is still a classical solution. We also see that there is no solution for any function / €
C'%(6Q) and g € CY(Q).

—Au=g¢gin ()

Q) =, V2 € 90
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If the equation admits a classical solution then for any connected component Q, of Q, we have

hdo + fgogdx= 0 e, (2.10)
We have the following theorem:

Theorem 2.1 Let Q be a bounded open set of R and 8Q its boundary of class C*. h € CH(6Q) and g € L{(Q).
Neumann's problem (2.8) admits a solution if and only if,

Joohdo + [ogdx=0. (2.11)

Proof. See [7, 8].

Theorem 2.2 Let Q be a bounded open set of R of class C'. Then the following partial differential equation

(—,uAuQ -1+ H)V(divm) +3kaVoo = f in Q

2
4 T = VoonoQ e (2.12)
2
L a_,? =0ona,

has a solution. This solution is unique up to an additive constant.

Proof. See [7, 8].

3. OPTIMAL SHAPE RESULTS

3.1. Existence of a solution by monotonicity of the functional

For the existence of optimal shape, we adapt the method proposed by Buttazo and Dal Maso. For further information, the reader can consult [6].
This method shows the existence of a minimum by considering the functional as monotone for inclusion and lower semi-continuous for the
topology of y-convergence. We denote by A(D) the set of quasi-open sets contained in a bounded open set D c R It is defined as follows:

A(D) = {Q c D\Q is quasi-open}.

studying the follozing problem min{G(Q) : Q € A(D), |Q|=K, K constant} 3.1

G(Q) = / p(z,ug, Vug) dr.
with G the functional defined by D

Under the constraint of the problem

(—uAug—(/1+u)V(aivm)+3kaveg:F in Q
I —Afg=gin Q
| @:h on dQ

an

Poevond, (3.3)

n

oy
—L—y) 0n dQ
on

e
6—7?:0 onad,

and the Borel function p verifies the following hypothesis:

p(x,y,2) is lower semi continuous on (x,z) in R for all (x,z) in D is decreasing on R p.p (x,z) € D. There exists C > 0, a € L'(D) thus that:

C (2% = bs* —a(x)) < p(x,s,2), Va,s,2

with b is a positive constant. Furthermore, we assume that the function p is decreasing. With this hypothesis, we can give the existence of an
optimal domain Q. This optimal domain belongs to the class of p — quasi open sets, defined as the sets {u > 0} for some function u € W, ”{17). As
a consequence, if p > N these optimal sets are actually open, but if p < N this fact does not occur any more under the very general assumptions
we made. The existence of optimal sets 2 could have been obtained through a generalization the case p > 1, making use of a y,—convergence on
the class of p-quasi open sets.

We can prove, under rather general assumptions on the integrand p, that Q has a finite perimeter. For more informations the reader can refer to
[21].

Theorem 3.1 Let G: A(D) — (—o0,+00) be a functional defined by

GQ)=[ [ plxuq Vug)dx e e e (34)
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with uq solution of the problem (3.3) and p verifies the above hypothesis. Then the problem (3.1) admits a solution for all K > 0.
Proof.
We start by showing the lower semi-continuity of the functional.

To do this, we set m = inf{G(Q), Q € A(D)} and ugq, = u,. Since u, is a solution of (3.3), then m > —oo, and thus there exists a minimizing
sequence (£, ) contained in A(D) such that G(Q) — m.

Consider u, a solution of the following problem:
— Ay —(A+ )V (divig)+3kaVoy=F in Q,

—-Abg=g inQ,
26,
Sn_p on oQ,
on
200
an":O ondg, SRR (1. |
a
uﬂ":v0 onaQ,
on
dug

o =00n 04,

We defined the function i, by

. _{un if xe Q,
=10 ifxeD\ Q.

Now, from the variational formula, we get

wf Vi Vodx — (A + ) [ ,VV. @) vdx — 3ka [ Voqv = [ fvdx. (3.6)

Taking v = i, in (3.6), we get
oIV 1% dx + uf IV T dx < |IF11* 1@ 117+ 3kallV6q |17 (15117

The solution Gan of the Laplacian operator is also bounded in H'(D)/R, then the term ||V6q el |? is also finite. So there exists a constant
M depending on f, k, a and u such that ||up||y,, < M.

The sequence uq,, is bounded in H 4;,(q r3) (D), which is a reflexive space. Then there exists an extracted sequence of (uq,,, ) still noted by
(uq ;. )k=1 and ug such that:

(ugy, Jiz1 = u € L (), (Vug,, )iz = Vg € LA(Q),

(div ug, Jrs1 — divug, € L*(Q), if k— o0 e (3.9)

In the same way, as |[V6q_, | |2 is also bounded in H'(Q)/R, there exists also a subsequence (6 k=1 such that the following convergence
holds

(Ba k=1 — 0 o€ LA(Q). e (3.10)

Passing to the limit as k — oo and using weak convergence

u/ Vug, Vodr — (A + ,u)/ V(V - ug)pdr — 3ka/ Viqp = / foda.
D D D D

Using Green formula in the first term of (3.11), we get

f —pAusde — (A + ,u.)/ V(V - ug)pde — 31!.'{&./ Viay = ] fodr Yo € Hy()
D D D D

Since we have:

—ubuly — (A + u)v(dwﬂg) +3kaVlg = f in D

*
aUQ

=vonadD.
n

And so, ug = ug, is a solution of (3.3). Using the assumption that p is lower semi-continuous,

we have:
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p(x, ug, Vug) < liminf p(z, dg,, , Vi, )

So upon integrating, we obtain:

/” p(z, uy, Vug,) de < lim / p(z, g, Vf‘r!;"k) dz.

k—s00 n

So, G(Q) < lim x —« inf G(€2, ). Therefore, the functional G is lower semi-continuous with respect to the topology of y-convergence. Next, we
will show that G is decreasing with respect to inclusion. Let Q; and € be two subsets of R® such that Q; c Q.
—pbuy— QA+ V(divig) +3kaV8 o= in Q;

—ABp=g in O
3991=h ondQq
060
anl=0 on d,, ret e e e e e e e e e e (3012)
a;?:vo on 0Qq
au
a—?:O on g4,
and
—ubu, — (A + wv(divuy) + 3kaVlg, = f in Q,
a0
692 =h on dQ,
%% — 0 ona, DTSSR € v ) |
n 2
6u
afz = vy on 0Q,
aum
. = 0ond,,

we consider uq — uqi and we get:

—,uA(uQZ —ugl) -+ ;1)Vdiv(uQZ - ugl) + 3k0{V(t9QZ - 091) =f (qu) —f(ugl) in Q
—A(6q,— 0q,) =0in Q
Woar %) _ ¢ iy 90,
0(00g,—00;) 00 (3.14)
# = _a_nl on d,,
6(u —u )
—ﬂ;" 2 = 0 on 9Q,
A (ugy—ug,) dug
—;“ L= ——0“2 on dg,.

By using the maximum principle, we have uq, > 0 in Q,, and therefore, by the same principle, we also have (uq, — uq)(x) > 0 for all x € Q;. We
also have the assumption that p(x,y,z) is decreasing, thus: p(x,uq;, Vuq) > p(x,uq,, Vug,). Thus we can conclude that G(Q) > G(Q,).

3.2. Existence of a solution by the -cone property

Theorem 3.2 Let Oad - Oe be a set open bounded domain of R". Then there exists on open set Q € O, satisfying

J(2) = min J(w).

weOuq

Proof.

At first, we will find a lower bound for the functional J(Q), Q € O,,. Because of the fact that 1, € L*(Q) and ug, is solution the problem (2.13),
there exists a constant M such that 0 <J(Q) < M.

Then, the functional J is bounded and there exists a minimizing sequence Q, € O,, such that J(Q,) —m = inf J(Q).

As Q, € O,y and O,y is closed to O, then according to a compactness theorem, there exists an open set Q € O,; and a subsequence Q,, of Q,
such that the following convergence holds:

ug, Huq, Xa,, L'p-pxQ
Qn HQ 0Qn, H 0Q.

Now, from the variational formula, we get



13640 Malick Fall et al. Existence of an optimal shape for a thermoelasticity problem and shape derivative via the lagrange method

quVuQ. Vodx — (A + u)fQV(V. ug)v dx — 3kanV99v dx = fgfv dx. e e et et e e e e e e (B115)
Hence in Qp, we get:

ufgnkVuan.Vv dx — (A + ,u)fgnkV(V. 'Llan)U dx — 3kaf9nkVBanv dx = fgnkfv AX (3.16)
Taking v=1uq_, in (3.16), we get

|z

2
“Ianlqunkl dx + (A + ,u)fgnk|V. uq | dx— 3kafgnkVGanuan = ankqunk dx R (1 ) |

2 2
'ufDXanlqunk| +‘ufDXan |V uan' dx = fDXan fugnk dx + 3kafDXan VegnkUandx

+3ka||V00 .|| |17uq.l|

2
<A1 [l
From (3.17),

as uq,, is bounded in D, we have

The solution 6q, , of the Laplacian operator is also bounded in H'(D)/R, then the term ||V8q nk||2 is also finite, so there exists a constant
M depending on f, k,a and u such that

lug, gy, =M.

The sequence ug , is bounded in Hgy, (D), which is a reflexive space. Then there exists an extracted sequence of (ug ) still denoted by
(Vug_ i1 and ua such that: if k& — oo,

ug, —UEL Q) (Vug Jis1 = Vur€ L2 (Q), (divug Jisr—divu€ L2 (Q) (3.19)

In the same way, as [[V0q | |2 is also bounded in H'(Q)/R, there exists also a subsequence (6q ) such that the following convergence holds
(V0o i1 —VOa € L (). e et e e e e e e (3.20)

From (3.16), we get

;1,/ XQ,%VU,Q%.Vgpdzzr—(z\—ku) / XanV(V'ZLQ"IT)@CZI_gk(}I/ XQWVQQHDQZ/ Xa,, fodr.
D JD D D

Passing to the limit as k& —oo and using weak convergence (3.19) and (3.20), we get the following formulation

i [ oV Voo = O+ ) [ xa¥ (- uiods ~ 3ka [ xaVoop = [ xafeds
JD JD JD JD

giving the following weak formulation

/1,/ Vug,.Vodr — ()\+u)/V(V - ug ) pdr — Bka/ Vbgp = / xafpdr.
0 0 0 0

Using Green formula in the first term of (3.22), we get
/ —pAugdr — (A + ,u)/ V(V - uh)pdr — Ska/ Vilap = / Jodr Yo € Hgi(Q)
Q Q 0 JQ .

since we have:
—ptAug, — (A +/|)V(Vr1'u:ug) + 3kaVilg = ? in 2

%ﬁi = v on J).

Finally by taking ¢ =uq_, in (3.21), and ¢ = uqin (3.22) we have:

lim (yfgnk|Vuan|2dx -4+ ,u)fgnkV(V. ug,, Jug,, dx — 3kaf9nkV99nkuan)
= limfgnkfugnkdx = fo(x)uE)

= uf oIVug|?dx — (A + @) [ (V(V.up)ubdx — 3ka [ Voqugdx

ankWuan - Vuﬂlzdx zanklqunk|2dx - Zankqunkvuﬂ + ank|Vu0|2dx.
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Then taking the limit in the right hand side after equality, as k — o

fﬂnk|vugnk - Vuﬂlzdx zanklqunk|2dx - Zfﬂnkvuﬂnkvun + fﬂnk|vuﬂ|2dx = 0.

And we show
2
) an|v(v. ug,,) — V(V.uq)ug| dx = 0
Jo,f@ay —u0) =0 and [, uqg, (V8 —V6g) = 0.

We have:

o, (0) —— ug (x)

V(V.ug, Jug,,  L*  V(Vug)ug

—
Voa,,. L} Voq.

Since:

J(Qni) = J ().

We prove that Q*is a minimizer of J.

Existence of a solution by compactness of set

Here we will weaken the assumptions but nevertheless the functional J remains lower y—semi continuous for the topology of y—convergence and
we study the compactness of A(D) for this convergence. The idea is to do a penalization of the functional J. This gives us

F(Q) = J(Q) + au[|Q] — ¢]" where a1 € R" is a penalization factor and J(Q) = B[ olAugl? dx + af olug — ugl? dx.
In this subsection, we will study a problem of the type
min {F(Q): Q€ A|Q|<c}, et e e e e e e e e e e e (3.23)

with F: A(D) — R a constrained shape functional of a parabolic boundary problem with uq as its solution and is defined by

—ubug — (A + wV(divig) + 3kaVog = f in Q
—A0p =ginQ
aaﬁ =h ondQ

n

% _ 4 on a, v e e (3.24)
o
5. =Vpon 0Q
Oy,
a—“ =0o0nd,,
Theorem 3.3 Let F: A(D) — (—o0,+0] be a shape functional that is lower y — semi — continuous weak. Then the following problem
min{F(Q): Q€ AD)} (3.26)

Has a solution.

Proof.

We start by showing the lower semi-continuity of the functional. To do this, we set m = inf{G(Q), Q € A(D)} and uq,=u,. Since u,, is a solution
of (3.25), then m > —oo, and thus there exists a minimizing sequence (£, ) contained in A(D) such that G(Q) — m.

Consider u, as a solution of the following problem:

—phuy—A+p)V(divig)+3kaVo,=F in Q,
—-A0q,=g in Qy

ae,
Znopon Q,
n

260,
on

e e (3.26)

=00n 0y,

oy,
Q

=14 on 9Qy,
on

oy,
Qn _
o =000,
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We defined the function i, by

__ _{un if xe Q,
! =0 ifxeD\ Q,.

Now, from the variational formula, we get

wf Vi Vodx — (A + ) [ VOV )vdx — 3ka[ VOqu = [ frde. (3.27)
Taking v =1, in (3.27), we get

wf Vi |2 dx + pf IV 12 dx < |IF11? [@l12 +3kal|V6q |12 [IEI12 (3.28)

[|? is also finite. So there exists a constant M

The solution Han of the Laplacian operator is also bounded in H'(D)/R, then the term ||V e
depending on £, k, o and u such that

ug g =M.

The sequence uq , is bounded in Hgy, (D), which is a reflexive space. Then there exists an extracted sequence of (uq ) still noted by
(uq,, )k=1 and uq such that:

eI PP

(“!!.,_)k}l - u;z © LQ[’Q,,‘. ), (‘\_f‘l.'gg"k);\?g Vu;,_ S Lz(Q), (329)
s i N S * 2 .

(div u”w)"?l divug € LA(Q), if k — o re e et e e e e e e e (3.30)

In the same way, as ||VOq , | |2 is also bounded in H'(Q)/R, there exists also a subsequence (6 ) such that the following convergence holds

(V0q,,)is1 — V0o € LA(Q). et (3231)

Passing to the limit as £ —— oo and using weak convergence
/z/ Vug, Vedr — (A + p) / V(V - ul)pdr — 3ka/ Vlgp = / feda.
D JD D D
Using Green formula in the first term of (3.32), we get
/ —puAusdr — (A + ) / VIV - ug)pde — 3ka / Vo = / fode Vo e Hy(Q)
JA J D v D 4D

Since we have:
—phuy— A+ ,u)V(divu_E;) +3kavVlg= fin D
ous
0

Since I, is bounded in Hyg;,, (D) there exist M> 0 thus that

=vonadD.

Nl gy, =M.

Hf ey = Up “dr + / |Wag, “dr < _'.illi inf [rl [ [ty . |'J..E:Hl.1' 4 i‘/A Vi, “du

On the other hand, the lower semi-continuity of the Lebesgue measure leads

af olug — ugl? dx + Bf o|Vugl? dx + a;(m, (Q) —c) < lll_l};lo inf [an|uan - uO|2 dx + ﬁfQ|Vuan|2 dx+]£g130al(mL(an) —-0)]
Then we have:

F(Q) < Il(ig}ninf F(Qy,,)-
Using Green formula in the first term of (3.32), we get

/ —ptAupdr — (A + u)/ VIV - ugh)pde — 3%'0/ Viae = / fode Yo € Hy ()
D D D D

Since we have:
—phuy, — (A + u)V(div@) + 3kaVlg = f inD
oug,
an

=vonadD.

Since i, is bounded in Hg;,, (D) there exist M> 0 thus that
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Ny <M.

o / e l2de 1L 3 [}V”EEQ"&"‘ < lim inf l— 2de 1 A3 / 174 \'2,1,.-]
- 1%

lag, — ugl=da < lim ind a l Lo et 1%
/ 1442 0 el = A [_ i J [T B J |V UG, (.lj
£ ' {2 @

On the other hand, the lower semi-continuity of the Lebesgue measure leads

af olug —uol? dx + BJ o IVug|? dx + a3 (my,(Q) — ©) < limye,, inf [afgll,Lan - u0|2 dx + ﬁfQ|Vuan|2 dx+ll{i_)rr010a1(mL(an) - )]

Then we have:

F(Q) < lim inf F(Qy).
4. Shape derivative result via Lagrange method

The objective of this section to calculate the shape derive of the functional (2.8). Before going further we first prove the following results which
as useful for the main result. The idea is to use the celebrated method of Hadamard for the shape functional that we considered. This method was
introduced by Hadamard in [9] and many other authors [22]. In there papers, the notions of shape derivative is given.

4.1. Shape optimization

Let Q c R" be a bounded open set of class C2 For t> 0, let Q,= ¢,(Q), where for all 1, ¢, associated for ¥ is diffeomorphism of R%. These
properties holds:

. , do _ :
do =V, | det(V(n) |= j(t.0), —= ==V, [ det(Ve, " |= j(~t,2)

Let Q,= (Id + V )(Q2) be a bounded open set of class C. For ¢>0, very small, and ¥ € C' N W"*(R?). Let us consider also, the function J in Q..
We have the following definition:

Definition 4.1 One function J(Q2) of the domain is said to be shape differentiable at Q if the mapping ¢+ — J(€;) from R into R is Frechet
differentiable at = 0. The corresponding Frechet derivative (or differential) is denoted by DJ(, V") and the following expansion holds:

JQ) = JQ) + tDIQ,V ) + o).

In the following, consider also then functional defined in Q, by

](Qt)=Bf91|VuQI|2dx+afgl|ugl—u0|2dx ................................. 4.1)

where u, be the solution to the following problem

—pbdug, —~(A+w)V(div_ g, )+3kavig,=F in Q,
—A0q,=9g inQ;

1 20— on 9 et et (4.2)

0y,
( 6_01 =vondQ

We look, in this section for the shape derivative of the functional J(€2). The key point in the calculation of the shape derivative DJ(Q,V) is in
general, the definition of an appropriate derivation for the mapping Q — ug. This mapping has a Lagrangian derivative u'g and an Eulerian

/
derivative U linking with the Laplacian derivative by
u'(Q,V) = u(Q) — vu. V.

For the definition of the Laplacian and eulerian derivative, we refer to [1], [23]. The following result is devoted to the shape derivative of the
functional.

Theorem 3.1 Lets Q a class domain C'(RY) and V a class vector field c.

Let FeC'((0,€)C°(Q,)) n €°((0,€),C*(Qy)). The function defined by
Ji(e) = fﬂt F(€,x)dx is

differentiable and its derivative is given by : DJ;(Q;,V) = f %F (€,x) + divF(€,x)V(x))dx (Hadamard)
Qe

)
DJ1(Q, V) = fﬂEEF(E’x) + faﬂeF(E, o)V.ndo.

Proof. See [1]
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Theorem 4.1 Let Q be a domain of class C'(RY) and J the functional defined by (4.1), where ug, is solution (4.2). Then J(Q,) is differentiable
and the shape derivative is given by

DJj(Q;V) = Zﬁf [Vug|.Vu'dx + 2af o lug —uplu' qgdx + af 5, lug —uel?V.ndo + B, , [Vuq |?V.ndo
Q
where u'q, the shape derivative verifies

—utu'qg — (A +wV(V.u'g) — 3kaVo'y = 0 in Q
AG"=0inQ 4.3)
u'=-vu.V = —Z—ZV.nonaﬂ.

Proof. In Q,, the function J is written as follows:
J(@Q) = BJ g, [Vugl? dx + af , lug — uol® dx.
The function J is differentiable and using Hadamard Formula we get

DJ(Q,V) = 2BJ o |Vug |V qgdx + 2af ,lug —uplw' gdx +af, 4 lug —uel?V.nds + B, , IVug |?V.ndo

for any V vector field with u'q the shape derivative of ut. We recall that, the mapping Q — Uq, has an Eulerian derivative, and in what

follows, we look for the equation verifies by u'q. We give first the variational formula in Qt. Multiplying the first equation of (4.2) by v € Hg;,,
(), and integrating, we get

| Vue,Vude — (A+p) [ V(Vag,)vde —3ka | Voqude = | f(z)v(z)dz.
Qi 2t i Qe 4.4)

For t quite small, we can differentiate (4.4) with (v = ¢) fixed. By applying the formula of (Hadamard) we have:

ufﬂVu’QV(pdx -1+ ,u)fﬂV(V. u'g)pdx + ufaﬂVuQVgaV. ndo — 3kafﬂV6’ﬂ(pdx
-1+ ,u)fanV(V. uq)eV.ngdo — 3kafaﬂV99(pV. ndo = faﬂfqu. ndo.

If ¢ is null on the boundary (on a neighborhood of the edge), we have:
/ [1VuGVe — (A + 1) V(V.ug)p — 3kaVogp] de =0
Q

And we have

/
Oug,

u/ Vg Vipde = —/.L/ Au&g@dw—ﬂl/ - = —u/ Augpda.
Q Q aa On Q

So (4.5) becomes

/ [—uAuge — (A + p)V(Voug )y — 3kaVohpldr = 0
Q .

So

And we get:

—pAug — (A + p)V(V.oug) — 3kaVe, =0 In

in the sense of distributions.

Let us recover the condition at the boundary, using the equality:
w(@QV) =u(Q) - V.V

The function u,0 (Id + tV') defined on the domain fix Q disappears on the boundary of Q for any t. We can therefore deduce:

i _ _
::,E(u,) o (Id + 1V, = a(, V) = 0 on 9

In other words, % © (1d + V) € Hi () for any t, therefore, according to the equality:
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u'(Q,V) =u(Q) —vu.V

u'satisfied
u' =-vu.V = —a—ul/.n on Q.
on

The last egality comes from the fact that the gradient of u is normal on the boundary.

4.2. Optimal conditions

Theorem 4.2 Let Q be the solution of the shape optimization problem min{J(Q, w € O, |w|=c, c constant} under the constraint u,solution to
(2.6). Then, there exists a Lagrange multiplier /. = 2(Q) such that

k(@,ug)+MQ)=0, e e (426)
where k is a constant.

Proof. Assume that Q is a minimizer of J under the contraint [QQ| = ¢, the theorem of Lagrange multipliers then implies that there exists a constant
4 such that for any group of diffeomorphisms (p?)7€R,

!
= (U0 + Aoy =0

for t=0.
Assume that (¢,),€g is the flow associated with V' € Ci*(®*). Then it is proved in the book of Antoine Henrot and Michel Pierre [1] that

Then

1l ()] Y
(r i ..‘) _./ Vinda.
dt /=0 Jo0
1700, L V.
(( {;f ' )r——u T2 _/;n (Ontia) Vonde

The theorem of Lagrange then implies that there exists a constant A such that:

d

(,](Qf) t ’)“@th:O

dt
Thus
—_l / (i:‘,,u,_;jz Vondeo + A / Vinde =0

2 Jan Jon
or

1, 2, .
-5 (dyun) Vi + AVin| do =0

an Ll =

or again

/ _5(0,,“5,)27“\ Vindo = 0
J 52 -) .

This gives us

*% ((I"),(.Hgg)z + A=10

Since V' is arbitrary, we infer that 0,uq is constant on Q. Moreover, since ug> 0 on Q, by maximum principle, 0,uq is positive.

5. CONCLUSION AND EXTENSIONS

In this paper, we have studied a thermoelasticity problem using optimization methods. We have shown the existence of optimal shape using y—
convergence with compactness of set, the monotonicity of a functional and in the other hand we using the epsilon-cone property. Then we have
established the shape derivative using Lagrange method. We then plan to study the regularity problems as well as the numerical methods of this
problem.
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