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ARTICLE INFO    ABSTRACT 
 

 

Entanglement is a key resource in the field of quantum computation and quantum technologies. One has 
to deal with measurement error-mitigation in the present day Noisy Intermediate-scale Quantum 
(NISQ) processors so as to witness advantages offered by entanglement. In this paper we implement 
Bell state measurements in IBM open access 7-qubit quantum processor ibmq_nairobi and mitigate 
errors incurred. We evaluate fidelities of all four Bell states (theoretical) with the ones retrieved 
experimentally before and after measurement error-mitigation. Our results reveal a clear enhancement 
in quantum fidelity after error-mitigation methods are employed.   
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INTRODUCTION 
 
Quantum computers are sought after in quantum technology as they 
exhibit the potential to outperform their classical counterparts (J. 
Preskill, 2018). However, the aim to build large-scale quantum 
processors with the ability to execute real-time computations faces 
many hurdles. Noise is one of the central obstacles that limits the 
performance of quantum computers of the Noisy Intermediate-scale 
Quantum (NISQ) era (J. Preskill, 2018, A. Montanaro, 2016). While 
developing fault-tolerant processors protected by quantum error-
correction serves as an ideal approach to minimize noise, it requires 
each of the logical qubits to be encoded into several physical qubits. 
In other words, an overhead cost on qubits for encoding the logical 
information is vital with the approach based on quantum error-
correction. One finds that the noise present in the NISQ quantum 
processors is too high for the execution of efficient error-correction 
codes(D. Qin, et. al,2022).Alternate method of suppressing quantum 
noise is to mitigate errors than correcting it (D. Qin, et. al, 2022;A. 
W. R. Smith, et. al, 2021). One has to ascertain how close are the 
solutions obtained after error-mitigation to the ideal ones. Quantum 
error-mitigation helps in establishing the quantum advantage for 
certain applications on NISQ devices. Dedicated efforts have thus 
been put in towards proof-of-principle tests in various available 
quantum processors. Cloud quantum computing based on IBM’s 
quantum network (IBM, 2023) has made it possible for global users 
around the world to explore quantum information processing without 
their own hardware devices.   

In the present work, wefocus on implementing Bell measurements 
and mitigating measurement errors. We employ theIBM open access 
7-qubit quantum processor ibmq_nairobi for this purpose. We carry 
out 5 trials of Bell state measurements with 20,000 shots each onthe 
qubits q0, q1 of ibmq_nairobi  processor. We evaluate fidelities of all 
four Bell states (theoretical) with the experimentally reconstructed 
ones before and after error-mitigation.  
 
Organization of our paper is as follows: In Section 2 we give a 
basic description of one and two qubit gates& quantum circuits for 
the construction of all four Bell states.  Section 3 gives a brief 
overview of the architecture of the 7-qubit quantum processor 
ibmq_nairobi. Probabilities of measurement outcomes in 5 different 
trials (with 20,000 shots/trial) of the Bell state measurement on all 4 
input Bell states are subjected toerror-mitigation. This is followed by 
the reconstruction of Bell state density matrices. In Section 4, we 
evaluate quantum fidelity of Bell states (theoretical)with the 
experimentally reconstructed ones before and after error-mitigation.    
Section 5 contains a short summary of our results.   
 

Qubit Gates and Measurements: A chosen set of one qubit gates i.e., 
Hadamard & X, Y, Z (which are 2 × 2  Pauli matrices), Rotation 
gates and two qubit Controlled NOT or CNOT gatehas been 
employed in quantum computation task. Any arbitrary unitary 
transformation on n-qubit state can be constructed using these single 
and two-qubit gates (A. Barenco, et.al, 1993).  In Table 1 we illustrate 
the symbols and mathematical representation of qubits, gates and 
measurements.  
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Density Matrix of 2-qubit system: A 2-qubit system is characterized 
by a 4 × 4 density matrix. 
 

𝜌 = ൮

𝜌଴଴;଴଴ 𝜌଴଴;଴ଵ

𝜌଴ଵ;଴଴ 𝜌଴ଵ;଴ଵ

𝜌଴଴;ଵ଴ 𝜌଴଴;ଵଵ

𝜌଴ଵ;ଵ଴ 𝜌଴ଵ;ଵଵ
𝜌ଵ଴;଴଴ 𝜌ଵ଴;଴ଵ

𝜌ଵଵ;଴଴ 𝜌ଵଵ;଴ଵ

𝜌ଵ଴;ଵ଴ 𝜌ଵ଴;ଵଵ

𝜌ଵଵ;ଵ଴ 𝜌ଵଵ;ଵଵ

൲ ≡ ቌ

𝜌ଵଵ

𝜌ଶଵ
𝜌ଷଵ

𝜌ସଵ

 
 
which satisfies the properties (i) Hermiticity: 𝜌
condition: Tr 𝜌=1 (iii) Positive semi-definiteness: 
properties lead to 2ସ − 1 = 15 real independent parameters 
governing the 2-qubit density matrix.  In order to determine the r
independent elements of 2-qubit density matrix, the tomography 
scheme (S. Dogra et al., 2021, H. Talath et al., 2023) involving a set 
of 7 measurements has been employed (see Table 2).  It is clear from   
explicit evaluation that  
 
𝑃ሬ⃗௭௭=(𝜌ଵଵ, 𝜌ଶଶ, 𝜌ଷଷ, 𝜌ସସ)் , 𝑃ு௭௭(0,0) − 𝑃ு௭௭(1,0)= 2 
𝑃ு௭௭(0,1) − 𝑃ு௭௭(1,1)= 2 Re𝜌ଶସ, 
𝑃௭ு௭(0,0) − 𝑃௭ு௭(0,1)=2 Re𝜌ଵଶ,𝑃௭ு௭(1,0) − 𝑃௭ு௭

𝑃௭ோ௭(0,0) − 𝑃௭ோ௭(0,1) = 2 Im𝜌ଵଶ,𝑃௭ோ௭(1,0) − 𝑃௭ோ௭

𝑃ோ௭௭(0,0) − 𝑃ோ௭௭(1,0) = 2 Im𝜌ଵଷ, 𝑃ோ௭௭(0,1) − 𝑃ோ௭௭

𝑃஼ு௭௭(0,0) − 𝑃஼ு௭௭(1,0) = 2 Re𝜌ଵସ, 𝑃஼ு௭௭(0,1) −
2 Re𝜌ଶଷ, 
𝑃஼ோ௭௭(0,0) − 𝑃஼ோ௭௭(1,0) = 2 Im𝜌ଵସ,  𝑃஼ோ௭௭(0,1) −
2 Im𝜌ଶଷ. 
 

Bell States: Bell states {| Φ±ൿ =
| ଴଴⟩± |ଵଵ⟩

√ଶ
 , | 𝛹±

maximally entangled orthogonal & complete set of basis states of the 
two-qubit Hilbert space.  

Circuit symbol & Matrix Representaion

 Qubit:               

 Hadamard Gate:

 Rotation Gate:    
 

 CNOT Gate
 
Z measurements

with outcomes 0, 1 
 

 
Table 2. Quantum tomographic scheme for 2

 
Tomographic operations Experimental probabilities of z measurements on both the qubits with outcomes   

𝐼 ⊗ 𝐼 

 
 

𝐻 ⊗ 𝐼 

 
𝐼 ⊗ 𝑅௑(𝜋/2) 

 𝐼 ⊗ 𝐻 

 
𝑅௑(𝜋/2) ⊗ 𝐼 

 

(𝐻 ⊗ 𝐼) CNOT 

 
(𝑅௑(𝜋/2) ⊗ ) CNOT 𝑃ሬ
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qubit system is characterized 

𝜌ଵଶ

𝜌ଶଶ

𝜌ଵଷ 𝜌ଵସ

𝜌ଶଷ 𝜌ଶସ
𝜌ଷଶ

𝜌ସଶ

𝜌ଷଷ 𝜌ଷସ

𝜌ସଷ 𝜌ସସ

ቍ 

= 𝜌ற(ii) Unit trace 
definiteness: 𝜌 ≥ 0. These 

real independent parameters 
qubit density matrix.  In order to determine the real 

qubit density matrix, the tomography 
2023) involving a set 

of 7 measurements has been employed (see Table 2).  It is clear from   

)= 2 Re𝜌ଵଷ, 

௭ு௭(1,1)=2 Re𝜌ଷସ, 
௭ோ௭(1,1)=  2Im𝜌ଷସ,  
ோ௭௭(1,1)= 2 Im𝜌ଶସ, 

) − 𝑃஼ு௭௭(1,1) =

) − 𝑃஼ோ௭௭(1,1) =

 
±ൿ =  

| ଴ଵ⟩± |ଵ଴⟩

√ଶ
} form 

maximally entangled orthogonal & complete set of basis states of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Density matrices of Bell states are given by, 
 

𝜌஍±
= | Φ±ൿൻΦ±| =

𝜌అ±
= | 𝛹±ൿൻ𝛹±| =

Here we consider the set of four Bell states {
for our tomographic construction. We need not carry out all 7 
tomographic operations given in Table 2 in this particular case. 
Itsuffices to implement the tomographic operation (
followed by z measurement on both the qubits.The tomographic 
operation   (𝐻 ⊗ 𝐼) CNOT  followed by z measurements on the qubits 
corresponds to complete orthonormal measurements constituted by 
the Bell state basis:  

CNOT(𝐻 Π
଴

𝐻 ⊗ Π଴ )CNOT =  
1

2
ቌ

CNOT൫𝐻 Π଴𝐻 ⊗ Πଵ ൯ CNOT =  
1

2

CNOT൫𝐻 Πଵ𝐻 ⊗ Π଴ ൯ CNOT =  
1

2

Circuit symbol & Matrix Representaion 

                

Hadamard Gate:  

Rotation Gate:    =  

CNOT Gate      

Z measurements 

with outcomes 0, 1  

Table 2. Quantum tomographic scheme for 2-qubit system 

Experimental probabilities of z measurements on both the qubits with outcomes   𝑖, 𝑗 = 0,1 

𝑃ሬ⃗௭௭ = ൛𝑃௭௭(𝑖, 𝑗) =  Tr(𝜌 Π௜ ⊗ Π௝)ൟ 

𝑃ሬ⃗ு௭௭ = ൛𝑃ு௭௭(𝑖, 𝑗) =  Tr(𝜌 𝐻 Π௜ 𝐻 ⊗ Π௝)ൟ 

𝑃ሬ⃗௭ோ௭ = ቄ𝑃௭ோ௭(𝑖, 𝑗) =  Tr(𝜌 Π௜ ⊗ 𝑅௑(𝜋/2) Π
௝
𝑅௑

ற(𝜋/2))ቅ 

𝑃ሬ⃗௭ு௭ = ൛𝑃௭ு௭(𝑖, 𝑗) =  Tr(𝜌 Π௜ ⊗ 𝐻 Π௝𝐻ൟ 

𝑃ሬ⃗ோ௭௭ = ൛𝑃ோ௭௭(𝑖, 𝑗) =  Tr(𝜌 𝑅௑(𝜋/2) Π
௜
𝑅௑

ற(𝜋/2)) ⊗ Π௝ ൟ 

𝑃ሬ⃗஼ு௭௭ = ൛𝑃஼ு௭௭(𝑖, 𝑗) =  Tr(𝜌 CNOT𝐻 Π௜𝐻 ⊗ Π௝ CNOTൟ 

𝑃ሬ⃗஼ோ௭௭ = ቄ𝑃஼ு௭௭(𝑖, 𝑗) =  Tr(𝜌 CNOT𝑅௑  Π
௜
𝑅௑

ற Π
௜
𝐻 ⊗ Π௝ CNOTቅ 

of bell state measurements using IBM 7-qubit open access quantum processor 

Density matrices of Bell states are given by,  

ൿൻ =  ଵ
ଶ

൦

1 0
0 0

0 ±1
0 0

0 0
±1 0

0 0
0 1

൪,  

ൿൻ =  1

2
൦

0 0
0 1

0 0
±1 0

0 ±1
0 0

1 0
0 0

൪ 

 

Here we consider the set of four Bell states {| Φା⟩, | Φି⟩, | 𝛹ା⟩, | 𝛹 ⟩} 
for our tomographic construction. We need not carry out all 7 
tomographic operations given in Table 2 in this particular case. 
Itsuffices to implement the tomographic operation (𝐻 ⊗ 𝐼) CNOT 
followed by z measurement on both the qubits.The tomographic 

followed by z measurements on the qubits 
corresponds to complete orthonormal measurements constituted by 

 

ቌ

1 0
0 0

0 1
0 0

0 0
1 0

0 0
0 1

ቍ =  | Φା⟩⟨Φା|  

1

2
ቌ

0 0
0 1

0 0
1 0

0 1
0 0

1 0
0 0

ቍ =  | Ψା⟩⟨Ψା|  

1

2
ቌ

1 0
0 0

0 −1
0 0

0 0
−1 0

0 0
0 1

ቍ =  | Φି⟩⟨Φି|  

Elements of 𝜌 
𝜌ଵଵ, 𝜌ଶଶ, 𝜌ଷଷ, 𝜌ସସ 

Re𝜌ଵଷ, Re𝜌ଶସ 

Im𝜌ଵଶ, Im𝜌ଷସ 

Re𝜌ଵଷ, Re𝜌ଶସ 

Im𝜌ଵଷ, Im𝜌ଶସ 

Re𝜌ଵସ, Re𝜌ଶଷ 

Im𝜌ଵସ, Im𝜌ଶଷ 

qubit open access quantum processor IBMQ_NAIROBI 



CNOT൫𝐻 Πଵ𝐻 ⊗ Πଵ൯CNOT =  
ଵ

ଶ
ቌ

0 0
0 1

0
−1

0 −1
0 0

1 0
0 0

 
and is useful for Bell state tomography. We employ the above 
measurement scheme to reconstruct Bell states using the 
ibmq_nairobi quantum processor and apply error-
 
Details of the Experiment and measurement error
had limited open access (10 minutes per month) to IBM quantum 
chips.  We implemented our experimental scheme using the 
and first qubits q0, q1 of IBM 7-qubit processor 
Architecture and characteristics of qubits q0, q
given in Figure 1).  
 

We created the Bell states    | Φ±ൿ =
 |଴଴⟩± |ଵଵ⟩

√ଶ
, | Ψ

Figure. 2 for the quantum circuits creating Bell states) 
5 trials with 20,000 shots per trial of the (𝐻 ⊗ 𝐼)
operations (see Figure 3 for the quantum circuits corresponding to the 
tomography operations) on qubits q0, q1 of ibmq_nairobi
processor. With input Bell states we implemented 
tomographic operation (See Figure 3) and carried out Z measurements 
on qubits q0, q1. We carried out five different trials, with 20,000 shots 
per trial on all four Bell states. Counts recorded in one of the trials for 
all four Bell states are shown in Figure 4.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Quantum error-mitigation: Quantum error-mitigation approach
Qin, et. al, 2022; A. W. R. Smith, et. al, 2021; S. Dogra 
is useful to reduce the damage caused by noisy qubits. We consider 
the experimentally extracted probability vector 𝑝
associated with the outcome 𝛼 = 0,1 of a specific measurem
operator 𝑀ఈon a qubit state, characterized by the density matrix 
One may wrongly obtain the outcome 1 when the qubit is in fact 
prepared in the state  |0⟩.  Similarly, it is possible to register the result 
0 for the input qubit state  |1⟩in a noisy measurement. Corrected 

probability vector 𝑝corr
(௜)= 𝐹௜

ିଵ 𝑝(௜) is obtained with the help of the 
2 × 2calibration matrix. 
 

𝐹௜ = ቆ
௙బ

(೔)
ଵି௙భ

(೔)

ଵି௙బ
(೔)

௙భ
(೔)ቇ, 

 

Architecture of 7-qubit quantum processor ibmq_nairobi 
 

 

Qubit T1 (𝜇s) 
0 98.75 32.37
1 126.96 88.59

T1: Energy relaxation time, T2: Dephasing time
 

 

Figure1. Architecture and experimental parameters for the qubits 
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0
0

0
0

ቍ =  | Ψି⟩⟨Ψି|  

and is useful for Bell state tomography. We employ the above 
measurement scheme to reconstruct Bell states using the 

-mitigation methods.  

Details of the Experiment and measurement error-mitigation: We 
had limited open access (10 minutes per month) to IBM quantum 
chips.  We implemented our experimental scheme using the zeroth 

qubit processor ibmq_nairobi.  
, q1 of ibmq_nairobiis 

 Ψ±ൿ =
 |଴ଵ⟩± |ଵ଴⟩

√ଶ
  (see 

ll states) and carried out 
) CNOT tomography 

operations (see Figure 3 for the quantum circuits corresponding to the 
ibmq_nairobi quantum 

With input Bell states we implemented (𝐻 ⊗ 𝐼) CNOT 
tomographic operation (See Figure 3) and carried out Z measurements 

We carried out five different trials, with 20,000 shots 
per trial on all four Bell states. Counts recorded in one of the trials for 

mitigation approach (D. 
2021; S. Dogra et. al, 2021) 

is useful to reduce the damage caused by noisy qubits. We consider 
𝑝ఈ = Tr (𝑀ఈ  𝜌 𝑀ఈ

ற) 
of a specific measurement 

on a qubit state, characterized by the density matrix 𝜌.  
One may wrongly obtain the outcome 1 when the qubit is in fact 

Similarly, it is possible to register the result 
measurement. Corrected 

is obtained with the help of the 

where 𝑓଴(ଵ)
(௜) = probability of correctly finding 0 (1) when the 

(which is subjected to measurement process) is in the state 0 (1)

 1 − 𝑓଴(ଵ)
(௜) = probability of wrongly obtaining 0 (1) when 

in state 0 (1). Corrected two-qubit probability vector is constructed by 

using  𝑝corr
(௤଴,௤ଵ)

= 𝐹௤଴,௤ଵ
ିଵ  𝑝ሬሬሬ⃗ (௤଴,௤ଵ

matrix corresponding to measurements on two of the qubits  
given by the 4 × 4  matrix 𝐹௤଴,௤

2 calibration matrices for qubits 
20,000 runs each with 0 and 1 as inputs) to be 
 

𝐹௤బ
= ൫଴.ଽଽ଴ ଴.଴ସଵ

଴.଴଴ଽ .ଽହ଼
൯,    𝐹௤భ

 
We then constructed corrected probability vector 
experimentally obtained probability vector 
𝑃ሬ⃗஼ு௭௭ =  Tr(𝜌 CNOT𝐻 Π௜𝐻 ⊗ Π௝

extraction of   uncorrected experimental Bell states 

| Ψ±ൿ
(Expt)

 as well as the corrected ones 

from error-mitigated probability vector 
states.     
 
Quantum fidelity of theoretical and experimentally tomographed 
bell states before and after error
Jozsa, 1994) of any two density matrices  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
𝐹(𝜌, 𝜎) = Tr൫

 
 is a measure of how close are the two states. For pure states 
| 𝜓⟩⟨𝜓|  and 𝜎 = | 𝜙⟩⟨𝜙|   fidelity reduces to 
 

𝐹(| 𝜓⟩, | 𝜙⟩)
 

We have evaluated quantum fidelities (i) 

𝐹 ቀ| Ψ±ൿ
(Expt)

, | Ψ±ൿቁ and (ii) 

𝐹 ቀ| Ψ±ൿ
(େ୭୰୰)

, | Ψ±ൿቁ  of experimentally reconstructed Bell state 

density matrices before and after error mitigation.
 
 
 
 

ibmq_nairobi  

 

 

Readout assignment error
 

 
CNOT error 

Calibration characteristics of qubits q0, q1 
 

T2 (𝜇s) Error P(0|1) Error P(1|0) CNOT error
32.37 0.0320 0.0132 

0.00918 
88.59 0.0286 0.0114 

T1: Energy relaxation time, T2: Dephasing time 

Figure1. Architecture and experimental parameters for the qubits q0, q1 of the 7-qubit superconducting quantum processor 
ibmq_nairobi (Credit-IBM) 

Asian Journal of Science and Technology, Vol. 15, Issue, 01, pp. 12856-12860, January, 20

= probability of correctly finding 0 (1) when the ithqubit 

subjected to measurement process) is in the state 0 (1) and 

= probability of wrongly obtaining 0 (1) when the ith qubit is 

qubit probability vector is constructed by 
ଵ) where the two-qubit calibration 

matrix corresponding to measurements on two of the qubits  q0, q1 , is 
௤ଵ = 𝐹௤଴ ⊗ 𝐹௤ଵ.We found the 2 ×

calibration matrices for qubits q0, q1 of ibmq_nairobi (based on 
20,000 runs each with 0 and 1 as inputs) to be  

൯ = ൫଴.ଽ଺ଶ .଴ସଵ
଴.଴ଷ଻ .ଽହ଼

൯. 

We then constructed corrected probability vector 𝑃ሬ⃗஼ு௭௭ ௖ ,  from the 
experimentally obtained probability vector 

௝ CNOT). This results in the 

extraction of   uncorrected experimental Bell states | Φ±ൿ
(Expt)

, 

as well as the corrected ones | 𝛷±ൿ
(Corr)

, | Ψ±ൿ
(Corr)

 (retrieved 

mitigated probability vector 𝑃ሬ⃗஼ு௭௭ ௖) for all the four Bell 

Quantum fidelity of theoretical and experimentally tomographed 
fore and after error-mitigation:  Quantum fidelity (R. 
of any two density matrices  𝜌 and 𝜎  given by  

൫𝜌ଵ/ଶ 𝜎 𝜌ଵ/ଶ൯
ଵ/ଶ

 

is a measure of how close are the two states. For pure states 𝜌 =
fidelity reduces to  

  ⟩) = |⟨𝜓| 𝜙⟩| . 

We have evaluated quantum fidelities (i) 𝐹 ቀ| 𝛷±ൿ
(Expt)

, || 𝛷±ൿቁ, 

and (ii) 𝐹 ቀ| 𝛷±ൿ
(Corr)

, | 𝛷±ൿቁ, 

of experimentally reconstructed Bell state 

density matrices before and after error mitigation. 

 

nment error 

 

CNOT error 

qubit superconducting quantum processor 

, 2024 



 
 
 

 
 
 

 
 
 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Quantum circuits em

Figure 3. Quantum circuits for the tomographic 

Figure 4. Counts recorded in one of the five experimental trials for all four Bell states. Total number of counts: 20,000.
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Quantum circuits employed for creating Bell states 
 

 

Figure 3. Quantum circuits for the tomographic operation (𝑯 ⊗ 𝑰) 𝐂𝐍𝐎𝐓followed by Z measurements
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qubit open access quantum processor IBMQ_NAIROBI 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Table 3 it is clearly seen that there is a marked improvement in 
quantum fidelity of the Bell states after error mitigation. We would 
like to point out that by employing the general two-qubit tomography 
scheme, as outlined in Table 2 using a set of 7 operations to 
reconstruct Bell states experimentally too highlights that error-
mitigation results in improved quantum fidelity up to 0.97 in the case 
of Bell states (H. Talath et al., 2023). However, Bell state 
tomography using (𝐻 ⊗ 𝐼) CNOToperation followed by z 
measurement on the qubits leads to better precision after error-
mitigation is carried out.   
 

SUMMARY 
 
We have investigated the performance of IBM open access 7-qubit 
quantum processor ibmq_nairobi for Bell state tomography. By 
incorporating the operation (𝐻 ⊗ 𝐼) CNOT followed by z 
measurements on the zeroth and first qubits q0, q1 of ibmq_nairobi 
quantum processor we reconstruct the Bell states experimentally. We 
employ the standard measurement error-mitigation methodsa nd 
extract corrected experimental probability vectors associated with 
Bell state measurements. It is clearly established that the quantum 
fidelity evaluated after error-mitigation is better than that obtained 
before error-mitigation. Our results serve as a proof-of-principle 
demonstration of the basic tomography process using NISQ quantum 
processors. 
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Table 3. Quantum fidelities of Bell states before and after error-mitigation 
 

Bell state   | 𝚽ା⟩ =
| 𝟎𝟎⟩ା |𝟏𝟏⟩

√𝟐
 Bell state  | 𝚽ି⟩ =

| 𝟎𝟎⟩  ି|𝟏𝟏⟩

√𝟐
 

Trial No. 𝐹(| 𝛷ା⟩(Expt), | 𝛷ା⟩) 𝐹(| 𝛷ା⟩(Corr), | 𝛷ା⟩) Trial No. 𝐹(| 𝛷ି⟩(Expt), | 𝛷ି⟩) 𝐹(| 𝛷ି⟩(Corr), | 𝛷ି⟩) 
1 0.92 0.97  0.92 0.98 
2 0.96 0.99  0.92 0.98 
3 0.95 0.98  0.89 0.95 
4 0.98 0.99  0.94 0.99 
5 0.98 0.99  0.95 0.99 

Bell state   | 𝚿ା⟩ =
| 𝟎𝟏⟩ା |𝟏𝟎⟩

√𝟐
 Bell state  | 𝚿ି⟩ =

| 𝟎𝟏⟩  ି|𝟏𝟎⟩

√𝟐
 

Trial No. 𝐹(| Ψା⟩(Expt), | Ψା⟩) 𝐹(| Ψା⟩(Corr), | Ψା⟩) Trial No 𝐹(| Ψି⟩(Expt), | Ψି⟩) 𝐹(| Ψି⟩(Corr), | Ψି⟩) 
1 0.89 0.97  0.92 0.97 
2 0.90 0.98  0.93 0.98 
3 0.88 0.96  0.92 0.97 
4 0.92 0.99  0.95 0.99 
5 0.92 0.99  0.96 0.99 
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