

RESEARCH ARTICLE

LABELING OF TEXT DATA USING AUTOENCODERS

*Praveen Thenraj Gunasekaran, Selvakuberan Karuppasamy and Subhashini
Lakshminarayanan

Artificial Intelligence, Accenture, Chennai, India

ARTICLE INFO ABSTRACT

Machine learning has come a long way in solving business use cases that has remained a nightmare to
human. Today machines learn data in ways like human, machine learning has matured so much that all
it requires is data and it can solve any problem if the correct data is provided. Among the different
learning techniques, we have in current ML world, supervised learning is a popular technique where the
model learns from labeled dataset. The model tries to learn the pattern from the data and tries to
correlate the independent and the dependent variable. But the challenge in real time is we don’t have the
readily available labeled data which applies to unstructured text as well. Given the volume of the text
data available and the multiple sources available, it would take humongous efforts to label these text
data manually. This has led to the rise of many unsupervised techniques to learn the data for solving use
cases. However, in-spite of numerous improvements in the domain of unsupervised learning, the
supervised learning continues to one of the preferred techniques for humans to train machines. The
objective of this paper is to use AutoEncoders combined with clustering technique to label the
unlabeled text training data when the number of classes for the dataset is known.

Copyright©2023, Praveen Thenraj Gunasekaran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

In the era of deep learning, labelling the training data manually is a
very tedious task, given the volume of training data that is being used.
With the advent of machine learning which can solve many use cases
in many domains, there must be techniques to solve its own problem
of getting the data labeled for training purposes. There are also
readily available labeling tools which can help labeling unlabeled
dataset but still the reliability of these packages remains a question
when it comes to critical business scenarios. In this paper, we propose
a simple solution, based on autoencoder and clustering to solve the
problem of labeling unlabeled text data. The solution consists of four
parts 1. Embed the training dataset 2. Extract important features of the
training dataset 3. Clustering of the lower dimension representation 4.
Keyword identification from each cluster.

BACKGROUND

Text data labeling: Text data is a form of unstructured data. There are
various sources of text data especially with the advent of internet and
social media, the volume of unstructured data available also has
increased linearly. Increase in volume also means annotating this
huge volume of text data involves huge amount of human effort.
Since we are dealing with big data, human intervention for such a
huge volume of data would result in more resource necessity,
accuracy in annotation as different people with different perceptions
would be involved and also increased cost. In the process of

continuous improvement, there has been some cool techniques semi-
supervised learning that has been identified to solve the problem of
unlabeled dataset. Unsupervised techniques also can be used to label
the training data whereas semi-supervised techniques make use of a
considerable portion of the training data that has already been labeled
and uses them to learn and label the remaining dataset.

LITERATURE REVIEW

In [1], the authors have used an autoencoder and clustering based
technique to solve the problem of labeling image dataset. The authors
have used MNIST dataset for this experiment. [7] A Siamese
network-based architecture to derive the sentence embeddings of a
given pair of sentences. This approach is a modified version of the
pretrained BERT model, and it generates more relevant embeddings
with much reduction in computation time as well. [4]uses Deep
Autoencoders along with SVM as a classification layer for classifying
the images. The authors have used MNIST dataset for this work and
have obtained 99.8% accuracy. [8] This paper marked a new era in
the domain of NLP. The authors realized the need for understanding
the contextuality of the tokens in a sentence and came up with two
architectures namely CBOW and Skipgram to generate word
embeddings for English language that can be used across any tasks.
[6] The authors in the paper have used K-Means algorithm as
clustering technique for clustering the similar national anthems of
different countries of the world. The authors have used TF-IDF as
mechanism to extract the features from the documents and then used
K-Means algorithm to cluster the documents. In [2], the authors have

ISSN: 0976-3376

Asian Journal of Science and Technology
Vol. 14, Issue, 06, pp. 12555-12560, June, 2023

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF
SCIENCE AND TECHNOLOGY

Article History:
Received 03rd March, 2023
Received in revised form
26th April, 2023
Accepted 14th May, 2023
Published online 20th June, 2023

Keywords:

Unlabeled text data, Auto Labeling,
AutoEncoders, Clustering.

Citation: Praveen Thenraj Gunasekaran, Selvakuberan Karuppasamy and Subhashini Lakshminarayanan. 2023. “Labeling of text data using
autoencoders”, Asian Journal of Science and Technology, 14, (06), 12555-12560.

used an autoencoder and clustering based architecture to identify the
optimal number of clusters from the unlabeled text dataset. The
authors have used Barez dataset from which the embeddings are
created using pretrained model ParseBERT. In this paper, the authors
have used Silhouette score to evaluate the clusters and find the
optimal number of clusters. [3] analyses the various forms of
autoencoders. The authors have discussed about the following forms
of autoencoders like sparse, denoising, contractive, variational,
disentangled autoencoders. The authors have also discussed about the
various applications of autoencoders like classification, clustering,
generative, anomaly detection, recommendation, dimensionality
reduction. [5]. In this paper, the authors have used an improved
version of Denoising Autoencoders for extracting the important
features and then added a softmax layer as classification layer. It was
observed that the improved version of the Denoising autoencoders
performed better than normal denoising auto encoder and a plain
KNN classifier. The accuracy of the denoising autoencoder stood at
95%. [9] The authors have proposed a sub word based embeddings in
this approach to overcome the shortcoming of out of vocabulary
tokens in case of generating embeddings. Also generating sub word
level embeddings proved to be efficient when handling domain
specific vocabulary and misspelt tokens.

Architecture: Our architecture consists of three modules namely
feature extraction, clustering and keywords identification module that
combine to achieve the concept of labelling a text dataset.

Auto Encoders: An Autoencoder architecture consists of two neural
network modules which includes encoder and decoder. The encoder
module can be considered as a simple compression module that
compresses the input data to a lower dimension while trying to retain
the important features. The layer which represents the input in the
lowest dimension in this architecture is called bottleneck region. The
decoder module can be considered as a reconstruction module that
tries to reconstruct the original data from the compressed data in the
bottleneck region. Fig(1). depicts an Autoencoder architecture with an
encoder on the left, bottleneck region at the center and decoder on the
right.

Fig (1). Auto Encoders

Equations: Let us assume an input text data X. An encoder block E
converts this text to input embeddings and compresses it to lower
dimension. The bottleneck layer B represents the inputs in the least
possible dimension. The decoder layer D outputs embedding X’. The
difference between the output and the input embeddings would be the
loss in this scenario. Here we use cosine similarity to measure the loss
between input and output embeddings. We use cosine similarity as the
loss function since we are dealing with text data. Usually, MSE is
used as the loss function for autoencoders, but in our case we have
used cosine similarity to capture the semantic aspect of the text data.

𝑋 ~ 𝑋′ (1)

𝐸 = 𝑓(𝑋) (2)

𝐵 = 𝑔(𝐸) = 𝑔(𝑓(𝑋)) (3)

𝐷 = ℎ(𝐵) = ℎ(𝑔൫𝑓(𝑋)൯) (4)

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
ଵ

ே
∑ 𝑐𝑜𝑠𝑖𝑛𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑋, 𝑋ᇱ)ே

ୀଵ (5)

From (1), we can see that X’ approximates almost to X which is the
primary function of autoencoder. The cost function (5) is measured as
the average cosine similarity between the original input document
embedding and the reconstructed document embedding. The objective
is to reduce this cost function and thus increase the cosine similarity
between the embeddings. During this process the autoencoder learns
the important features of the text data.

Clustering: An unsupervised learning method that aims to group the
input data based on the similarity of the features. Clustering has been
widely used in multiple use cases where the data is unlabeled and has
been found to be effective in achieving the objective of the task.

WordCloud: The documents corresponding to the embeddings
grouped in the respective clusters are collected. A WordCloud is
generated from the keywords of these clusters which will help
identify the label of each cluster.

METHODOLOGY

In this paper, we are using an autoencoder architecture to learn the
important features of the text data. The bottleneck layer of the
architecture represents the text data in a lower dimension. With
successful training, this layer learns the most important feature of the
text data.

Fig. 2. Number of samples in each class

Figure 3.

Dataset: The training data considered as part of this experiment is the
ag-news dataset from the Huggingface hub. The dataset is the news
articles pertaining to four classes namely Business, Science/
Technology, Sports, World. It is a multiclass dataset with 30000
samples per each class as shown in Fig (2). The overall dataset
consists of 120000 records.

Cleaning: As part of the pre-requisite for training process, the dataset
was cleaned to remove the stop words and special words that do not

12556 Praveen Thenraj Gunasekaran et al., Labeling of text data using autoencoders

add any meaning to a sentence or have an impact on the labeling
activity. As part of the preprocessing step, it was inferred that the
length of 75% of the training data was in the range of 30
show in Fig 4(a). Here the tokenization was done using normal split
based on space technique. Even pre-trained BERT tokenizers can be
used for the same to check if it can improve the overall performance
of the system. Basic preprocessing steps were done to clean the
dataset that had some special characters Fig 4(b). But certain
characters like $/’= are retained Fig 4(c) to avoid losing data related
to domain.

Fig. 4(a). Distribution of length of news article

Fig. 4(b). Special characters in the dataset before cleaning

Fig. 4(c). Special characters in the dataset after cleaning

Sentence Embeddings: To represent the words/sentences in the
machine understandable format we need to vectorize the input data.
Here in our case our input data is a sentence and hence we must
vectorize the sentence. We can achieve this vectorization through
different methods like vectorizing the tokens in a document using
Word2Vec [8] or Fast Text [9] and then using techniques like
averaging the vectors of all the tokens in a sentence or by directly
using pretrained sentence embeddings. In this modern era of deep
learning, we have wide options for using sentence embeddings.

12557 Asian Journal of Science and Technology,

add any meaning to a sentence or have an impact on the labeling
p, it was inferred that the

length of 75% of the training data was in the range of 30-50 tokens as
show in Fig 4(a). Here the tokenization was done using normal split

trained BERT tokenizers can be
eck if it can improve the overall performance

of the system. Basic preprocessing steps were done to clean the
dataset that had some special characters Fig 4(b). But certain
characters like $/’= are retained Fig 4(c) to avoid losing data related

4(a). Distribution of length of news article

4(b). Special characters in the dataset before cleaning

4(c). Special characters in the dataset after cleaning

To represent the words/sentences in the
understandable format we need to vectorize the input data.

Here in our case our input data is a sentence and hence we must
vectorize the sentence. We can achieve this vectorization through
different methods like vectorizing the tokens in a document using

Text [9] and then using techniques like
averaging the vectors of all the tokens in a sentence or by directly
using pretrained sentence embeddings. In this modern era of deep
learning, we have wide options for using sentence embeddings.

Sentence Transformers is one among them that has several pre
models to create embeddings. For our experiments we have used pre
trained model all-mpnet-base-v2 from Sentence Transformers to
create the input embeddings.

Experiment: As part of the training process, we have split the data
into 80%-20% train, validation split. The training dataset consists of
96000 records and validation dataset consists of 24000 records. The
training data used here is labeled. But we are proposing this solution
for labeling text data when we have huge training data that is
unlabeled. The training data is vectorized using the Sentence
Transformer to create the sentence embeddings. The embeddings are
then passed through the encoder module.
used a simple undercomplete autoencoder architecture where we have
bottleneck layer which represents the input in the least dimension thus
retaining the important features. We have tried different combinations
of hidden layers and neurons as part of our experim
Table I. A general inference from the experiment was that the results
were decent when we were considering optimal dimensions in the
bottleneck region rather than reducing it to very low dimensions
which causes the bottleneck layer to miss
important features from the input Fig (8).
similarity as the loss function in our experiments to measure the
similarity between input and output embeddings. The cosine
similarity varies between -1 to 1. Cosine simila
sentences indicate greater similarity between the two sentences,
whereas cosine similarity of 1 indicates that two sentences are more
dissimilar.

Fig. 5. Cluster 1

Fig. 6. Cluster 2

Asian Journal of Science and Technology, Vol. 14, Issue, 06, pp. 12555-12560, June, 2023

Sentence Transformers is one among them that has several pre-trained
models to create embeddings. For our experiments we have used pre-

v2 from Sentence Transformers to

aining process, we have split the data
20% train, validation split. The training dataset consists of

96000 records and validation dataset consists of 24000 records. The
training data used here is labeled. But we are proposing this solution

eling text data when we have huge training data that is
unlabeled. The training data is vectorized using the Sentence
Transformer to create the sentence embeddings. The embeddings are
then passed through the encoder module. In our experiment, we have

a simple undercomplete autoencoder architecture where we have
bottleneck layer which represents the input in the least dimension thus
retaining the important features. We have tried different combinations
of hidden layers and neurons as part of our experiments as shown in
Table I. A general inference from the experiment was that the results
were decent when we were considering optimal dimensions in the
bottleneck region rather than reducing it to very low dimensions
which causes the bottleneck layer to miss capturing the most
important features from the input Fig (8). We have used cosine
similarity as the loss function in our experiments to measure the
similarity between input and output embeddings. The cosine

1 to 1. Cosine similarity of -1 between two
sentences indicate greater similarity between the two sentences,
whereas cosine similarity of 1 indicates that two sentences are more

Fig. 5. Cluster 1 – World

Cluster 2 – Sport

2023

The network is then optimized to reduce this loss as part of the
training process. We have used Adam optimizer with learning rate of
0.0001 for 10 epochs with batch size as 32. The weights of the
bottleneck layer are learnt during the back propagation of t
phase where the model tries to learn these weights by minimizing the
loss function. Once the training is completed, the entire dataset
(training plus validation dataset) is passed through the encoder
module and the representations are extracted from the bottleneck
region. The representation from this layer is a compressed version of
the input data. These representations in low dimension are then
clustered using K-Means algorithm. In our case, we know that the
dataset has four labels and hence we have set the number of clusters
to four. While using this solution for auto labeling of text data, we can
use the number of clusters same as the number of labels in case if we
know about the number of labels in the dataset. In case of unknown
number of labels, we can use techniques like elbow curve to identify
the optimal number of labels and silhouette score to identify the
measure of similarity of a data point in a cluster with other data points
in the same cluster. The data points from each cluster are
an input to WordCloud.

Fig. 7. Cluster 3 – Business

Fig. 8. Cluster 4 – Science/Technology

The WordCloud generates a cloud of keywords, and the size of the
keywords varies depending upon the importance of those words in
that cluster. Since the number of clusters in our scenario is 4, we have
generated the WordCloud for these 4 clusters. As can b
Fig (5) showing cluster 1 contains keywords like Iraq, Iran, United
States, Baghdad, Afghanistan which clearly indicates that the
particular cluster is talking about world news and hence the data
points pertaining to this cluster can be labeled as world in our case.
Similarly, Fig (6). shows a cluster with keywords like win, season,
victory, game, player which clearly indicates that this cluster is

12558 Praveen Thenraj Gunasekaran

The network is then optimized to reduce this loss as part of the
training process. We have used Adam optimizer with learning rate of
0.0001 for 10 epochs with batch size as 32. The weights of the
bottleneck layer are learnt during the back propagation of the training
phase where the model tries to learn these weights by minimizing the
loss function. Once the training is completed, the entire dataset
(training plus validation dataset) is passed through the encoder

from the bottleneck
region. The representation from this layer is a compressed version of
the input data. These representations in low dimension are then

Means algorithm. In our case, we know that the
have set the number of clusters

While using this solution for auto labeling of text data, we can
use the number of clusters same as the number of labels in case if we
know about the number of labels in the dataset. In case of unknown

bels, we can use techniques like elbow curve to identify
the optimal number of labels and silhouette score to identify the
measure of similarity of a data point in a cluster with other data points

The data points from each cluster are then fed as

Science/Technology

The WordCloud generates a cloud of keywords, and the size of the
keywords varies depending upon the importance of those words in
that cluster. Since the number of clusters in our scenario is 4, we have
generated the WordCloud for these 4 clusters. As can be seen from
Fig (5) showing cluster 1 contains keywords like Iraq, Iran, United
States, Baghdad, Afghanistan which clearly indicates that the
particular cluster is talking about world news and hence the data

as world in our case.
Similarly, Fig (6). shows a cluster with keywords like win, season,
victory, game, player which clearly indicates that this cluster is

talking about sports news and hence the data points in this cluster can
be labeled as sports. As can be seen in Fig (7) the keywords oil, price,
billion, dollar clearly indicate that the cluster is referring to business
label. From Fig (8) the keywords like Microsoft, internet, IBM,
technology indicate that this cluster belongs to Science/Technology
class. Table I illustrates the comparison of various iterations of the
experiment. From the table, we infer that the labeling accuracy was
decent when the bottle neck layer dimension was kept around 100
175. The accuracy with this setup varies from 0.34 to 0
tried to reduce the bottleneck layer dimension to very low values like
below 100, it impacted the accuracy to a great level. Thus, we could
infer that when the bottleneck layer dimensions decreased the
autoencoders failed to capture the importa
data. One another parameter we tried is varying the number of hidden
layers to understand how it impacted the feature extraction process.
We could infer that with increase in number of hidden layers as
shown in Table I, the model accuracy decreased drastically. Though
the training and validation accuracies remained like other runs, but
the test accuracy was impacted. From this we were able to infer that
increasing the number of hidden layers increased the complexity of
the autoencoder architecture thus leading to overfit. When the number
of hidden layers were optimal and set to 7 and the bottle neck
dimension was set to 150, the results were good. No overfitting issues
were noticed during this setting run. The best accuracy of 0.6 w
achieved during this run.

Fig. 9. Bottleneck layer dimension

Layers

Fig. 10. Bottleneck layer dimension
Layers

Future Work: In this paper, we have tried to address the problem of
human effort required in labeling a text data even when the number
labels for the dataset is known. We have used a simple undercomplete
autoencoder and clustering based technique to extract the key

Praveen Thenraj Gunasekaran et al., Labeling of text data using autoencoders

talking about sports news and hence the data points in this cluster can
an be seen in Fig (7) the keywords oil, price,

billion, dollar clearly indicate that the cluster is referring to business
label. From Fig (8) the keywords like Microsoft, internet, IBM,
technology indicate that this cluster belongs to Science/Technology

Table I illustrates the comparison of various iterations of the
experiment. From the table, we infer that the labeling accuracy was
decent when the bottle neck layer dimension was kept around 100-
175. The accuracy with this setup varies from 0.34 to 0.6. When we
tried to reduce the bottleneck layer dimension to very low values like
below 100, it impacted the accuracy to a great level. Thus, we could
infer that when the bottleneck layer dimensions decreased the
autoencoders failed to capture the important features from the text
data. One another parameter we tried is varying the number of hidden
layers to understand how it impacted the feature extraction process.
We could infer that with increase in number of hidden layers as

accuracy decreased drastically. Though
the training and validation accuracies remained like other runs, but
the test accuracy was impacted. From this we were able to infer that
increasing the number of hidden layers increased the complexity of

der architecture thus leading to overfit. When the number
of hidden layers were optimal and set to 7 and the bottle neck
dimension was set to 150, the results were good. No overfitting issues
were noticed during this setting run. The best accuracy of 0.6 was

Bottleneck layer dimension – 128, Number of Hidden
Layers – 1

Bottleneck layer dimension – 150, Number of Hidden
Layers – 1

In this paper, we have tried to address the problem of

human effort required in labeling a text data even when the number of
labels for the dataset is known. We have used a simple undercomplete
autoencoder and clustering based technique to extract the key features

of text data using autoencoders

Table 1. Comparison of metrics during different iterations of the experiment

Number of Hidden
Layers

Bottleneck Layer
Dimension

Epochs

Precision

1
128 10 0.4
150 10 0.37
175 10 0.23

6 16 10 0.03
7 150 10 0.88
9 100 10 0.01
9 150 10 0.05

21 10 10 0.09

 Fig. 11. Bottleneck layer dimension – 150, Number of Hidden Layers

12559 Asian Journal of Science and Technology,

Table 1. Comparison of metrics during different iterations of the experiment

Class

Business Science/Technology Sports

Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

0.59 0.47 0.18 0.15 0.16 0.26 0.25 0.26
0.55 0.45 0.95 0.69 0.8 0.29 0.24 0.26
0.2 0.21 0.95 0.67 0.79 0.35 0.52 0.42

0.03 0.03 0 0 0 0.46 0.74 0.57
0.75 0.81 0.88 0.9 0.89 0.32 0.34 0.33
0.01 0.01 0.94 0.68 0.79 0.39 0.61 0.47
0.05 0.05 0.01 0.01 0.01 0.37 0.45 0.41
0.25 0.14 0.21 0.06 0.09 0 0 0

150, Number of Hidden Layers – 7 Fig. 12. Bottleneck layer dimension – 10, Number of Hidden Layers

Asian Journal of Science and Technology, Vol. 14, Issue, 06, pp. 12555-12560, June, 2023

Accuracy
World

Precision Recall F1-Score

0.01 0.01 0.01 0.25
0.33 0.31 0.32 0.45
0.34 0.31 0.33 0.43
0.03 0.02 0.03 0.2
0.37 0.39 0.38 0.6
0.07 0.05 0.06 0.34
0.02 0.01 0.01 0.13
0.2 0.2 0.2 0.13

10, Number of Hidden Layers – 21

and cluster them to create labels. We have run experiments with
different iterations by varying the neuron size and hidden layer size
and keeping the number of epochs constant. Our initial objective was
to understand how efficient we can use this technique for labeling an
unlabeled text dataset and we have achieved 0.6 accuracy using it.
The primary scope of future work is to try this architecture for a
domain specific dataset (eg. Banking, Insurance) to understand how
well domain knowledge can be captured using this technique, as there
will be limitations like limited labeled data for domain specific data.
We would also like to extend the scope of this work to try different
embedding techniques to generate the input for the autoencoder.

REFERENCES

[1] Paraskevi Nousi, Anastasios Tefas,” Self-supervised autoencoders

for clustering and classifcation”, Springer-Verlag GmbH
Germany, part of Springer Nature 2018

[2] Soodeh Hosseini, Zahra Asghari Varzaneh,” Deep text clustering
using stacked AutoEncoder”, Springer Science+Business Media,
LLC, part of Springer Nature 2022

[3] Dor Bank, Noam Koenigstein, Raja Giryes,” Autoencoders,”
arXiv:2003.05991v2 [cs.LG] 3 Apr 2021

[4] Munmi Gogoi, Shahin Ara Begum, “Image Classification using
Deep Autoencoders”, 2017 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC)

[5] Zhenyu Yang, Xue Pang, “ Research on Text Classification of
Denoising Autoencoder Based on Additional Momentum and
Adaptive Learning Rate”, 2018 11th International Symposium on
Computational Intelligence and Design (ISCID)

[6] Chaman Lal et al., “Text Clustering using K-MEAN “ ,
International Journal of Advanced Trends in Computer Science
and Engineering, 10(4), July – August 2021, 2892 – 2897 2892

[7] Nils Reimers, Iryna Gurevych,” Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks”, EMNLP 2019

[8] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean,
“Efficient Estimation of Word Representations in Vector Space”,
arXiv:1301.3781v3 [cs.CL] 7 Sep 2013

[9] Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas
Mikolov, “Enriching Word Vectors with Subword Information”,
arXiv:1607.04606v2 [cs.CL] 19 Jun 2017

12560 Praveen Thenraj Gunasekaran et al., Labeling of text data using autoencoders

