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ARTICLE INFO    ABSTRACT 
 

 

In this paper, we consider the polytope P(G) of all elementary dicycles of the digraph G. Using the 
concept of affinely independence, we show how to construct elementary dicycles that incidence vectors 
are affinelyindependent. This technique is therefore applied to determine the already known dimension 
of the polytope P(G). 
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INTRODUCTION 
 
Let G = (V,A) be a connected digraph with V as vertex set and A as arc set. We mean by dicycle a sequence (v0, a1, . . . ,ak, 
vk)where k is an integer, v0, v1, . . . vk are vertices such that v0 = vk. For every index i, ai is an arc connecting vertices vi-1 and 
vi(where i ∈ {1, . . . k}) and, finally, all arcs ai have the same direction. An elementarydicycleis a directed cycle (v0, a1, . . . , ak, vk) 
in which each vertex vi, for every index belonging to {0 . . . k}, appears once. We denote by P(G) the polytope of all elementary 
dicycles of G. That is, the convex hull of the set of incidence vectors of elementary dicycles of the digraph G. Thus, P(G) = conv 
{x ∈ {0, 1}A : x is an incidence vector of an elementary dicycle}. The polytope P(G) has been already studied by Balas & Oosten, 
(2000). The authors present a linear description of the cycle polytope in digraphs. They study the facial structure of valid 
inequalities defining the polytope P(G). Balas & Stephan, (2009) consider the dominant of the polytope P(G) and derive other 
facet-defining inequalities forP(G). Hartmann & Ozlukb, (1979) provide a polyhedral analysis of the p-cycle polytope, which is 
the convex hull of incidence vectors of all the p-elementary dicycles with p arcs of the complete directed graph G. In the case of 
undirected graphs, the cycle polytope has been studied by Coullard & Pulleyblank, (1989), and after Bauer, (1997). Kovalev et al., 
(1997) and Bauer et al., (1998) study the cardinality constrained cycle polytope which is the convex hull of all cycles with at most 
p nodes on a complete undirected graph. The p- cyclepolytope has been also studied by Nguyen &Maurras, (2001)Nguyen 
&Maurras, (2002) for p = 3 and for 2 < p < n. Note that cycles in graphs or digraphs play an important role in many applications. 
One of the most in-teresting and important applications has to do with testing circuits. A circuit can be modeled by a directed 
graph where the vertices represent gates (which compute boolean functions) and the arcs which represent the wires which connect 
gates (see, Leiserson & Saxe, (1991). In literature one can find other applications of cycle problem in other areas as analysis of 
electrical networks, analysis of chemical and biological pathways. For some examples of cycle problem applications, we refer the 
reader to Serafini & Ukovitch, (1989), Bollob`as, (2002) and Kavitha et al., (2009). In this paper, we address a constructive 
algorithm that generates elementary dicycles of P (G) that incidence vectors are affinely independent. Based on this algorithm, we 
determine the already known dimension of the polytope P(G), (see, Balas & Oosten, (2000), Balas & Stephan, (2009)). In the rest 
of this section, we give further definitions and notations. Consider a loopless complete digraph G = (V,A), with V = {v1, v2, . . . , 
vn}and A = {a1, a2, . . . , am}.n and m are vertex and arc numbers of G, respectively. As G is complete, we have m = n(n − 1).  
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Given a sub-digraph, say, H, we denote by A(H), its arc set. Particularly, an elementary directed cycle C has A(C) as arc set. We 
mean by a minimal elementary dicycleC an elementary dicycle which has only two arcs. We recall from the definition of affine 
independence that vectors γi, i = 1, . . . , q are said affinely independent, if there exists some coefficients λi, i = 1, . . . , q such that 
the unique solution of systems ∑ 𝜆௜𝛾௜ = 0

௤
௜ୀ଴  and ∑ 𝜆௜ = 0

௤
௜ୀ଴  isλi = 0, i = 1, . . . , q. In the sequel, we denote by Pv

s,t a s − t 
elementary dipath with A(Pv

s,t) = {(s, v), (v, t)} 2 Construction of dicycles with affinely independent vectors We introduce an 
algorithm that constructs elementary dicycles with affinely independent incidence vectors. After, we apply the algorithm to 
determine the dimension of the dicyclepolytope P(G).  
 
Affinely independent dicycle vectors algorithm: In this paragraph, we describe a constructive algorithm for the elementary 
dicycle problem. Before, let see the following result. 
 
Lemma 1.Consider a set{Ci, i = 1, . . . , q}of some elementary dicycles that incidence vectors γi, with i ∈ {1, . . . , q} are affinely 
independent. Let Cq+1∉ {Ci, i = 1, . . . , q}, with incidence vectorCq+1 , be an elementary dicycle that contains an arc aj∈A(Cq+1) 
such that aj∉A(Ci), ∀Ci∈ {Ci, i = 1, . . . , q}. Then, vectors γ1, γ2, . . . ,γq, γq+1are affinely independent. 
 
Proof. The proof follows directly from the definition of affine independence. Given the loopless complete digraph G = (V,A), 
consider an hamiltonian elementary dicycle, say C1, with 
 
A(C1) = {a1 = (v1, v2), a2 = (v2, v3), . . . , an-1 = (vn-1, vn), an = (vn, v1)} 
 
and the minimal dicycleC2 that pass by the arc a1 =  (v1, v2). That is 
 
A(C2) = {a1 = (v1, v2), an+1 = (v2, v1)}. 
 
Note that both dicycles C1 and C2pass by the arc a1 =  (v1, v2).Let partition the arc set A as follows 
 
A = A′ ∪A1∪A2, 
 
whereA′ = A(C1) ∪A(C2), A1 = {an+2, . . . , 𝑎௡మିଷ௡ାସ}and A2 = {𝑎௡మିଷ௡ାହ, . . . , 𝑎௡మି௡}.  
 
A(C1) and A(C2)have been defined above. A2 is the set of arcs that do not belong to any elementary dicycle that passes by the arc a1 

=  (v1, v2). Without taking into account the arc (v1, v2), as (n − 2) arcs outgoing from vertex v1 and(n − 2) arcs incoming to vertex 
v2, we have|A2| = 2n − 4. This implies that|A1| = n2 − 4n + 3. Indeed 
 
n(n − 1) − (n + 1) − (2n − 4) = n2 − 4n + 3. 
 
In what follows, let 𝑃௩భ,௩ೖ

 , k ∈ {3, . . . , n}be a v1–vk elementary dipath such that 
 
A(𝑃௩భ,௩ೖ

) ⊂A(C1). 
 
Based on Lemma 1 and with respect to partitions of the arc set A, the following algorithm constructs elementary dicycles that 
incidence vectors are affinely independent. 
 
Proof. Steps 5 − 8, 11 − 22 and 25 − 30 of Algorithm 1 create respectively (n − 1), (n2− 5n + 6) and (2n − 4) elementarydicycles. 
In addition to dicyclesC1 and C2, we verify that Algorithm 1 creates (n − 1)2elementary dicycles. On the other hand, at each step, 

the current created dicycle Cl contains an arc ai, i ∈ {n + 2, . . . , n2− 3n + 4}for ai∈A1 or an are ai, i∈ {n2− 3n + 5, . . . , n(n − 

1)}for ai∈A2 that do not belong to any of the previously createddicyclesC1,C2, . . . ,Cl-1. Therefore, according to Lemma 1, 
incidence vectors of (n−1)2dicycles created by Algorithm 1 are affinely independent.  
 

 
 

12346                           Mamane Souleye Ibrahim and Oumarou Abdou Arbi, Affinely independent solutions based algorithm for the dicycle polytope 



Algorithm 1. Computation of dieyeles with affinely independent veetors

 
In this example, we apply Algorithm 1 based on Lemma 1 to construct elementary directed cycles that
vectors are affinely independent. We first compute the 
a4 = (v4, v1)} and the minimal dicycleC2 with 
A(C1) ∪A(C2). As A2 = {a9 = (v1, v3), a10 = (v
elementary directed cycle that contains the arc
(A′ ∪A2). We verify that dicyclesC1 and C2 contains 
4 = 2 ∗4 − 4 = 4. Let C = {C1,C2}.  
 
• First iteration of Steps 5-7. Set l ← 3, i ← 6 
 
From the arc a6 = (v3, v1) ∈A1, we create C3← 
(v3, v1) ∉A(C1) and a6 = (v3, v1) ∉A(C2). According to Lemma 1, incidence
independent. Reset C = C ∪ {C3} and k ← 4.
 
• First iteration of Steps 11-22. We have l ← 

vk)}∪{(vk, v1)}. So, A(C4) = {(v1, v2), (v2,  V
∉A(C3). This implies that inci- dence vectors
{C4}, k← 5. 
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In this example, we apply Algorithm 1 based on Lemma 1 to construct elementary directed cycles that
vectors are affinely independent. We first compute the hamiltoniandicycleC1 with A(C1) = {a1 = (v

with A(C2) = {a1 = (v1, v2), a5 = (v2, v1)}. Consider partitions 
= (v3, v2), a11 = (v1, v4), a12 = (v4, v2)}is the set of arcs by which do not pass any 
arca1 = (v1, v2), we set A1 = {a6 = (v3, v1), a7 = (v2, v4), a
contains (n + 1) = 5 distinct arcs,|A1| = n2− 4n + 3 = 16 

6 and k ← 3. 

← 𝑃௩భ,௩ೖ
∪{(vk, v1)}. That is A(C3) = {(v1, v2), (v2, v3), (v

. According to Lemma 1, incidence vectorsγ1 of C1,γ2 
4. 

← 4, i ← 7, j = 2, k = 4 From the arc a7 = (v2, v4) ∈

V4), (v4, v1)}. Verify that a7 = (v2, v4) ∉A(C1),a7 = (v
dence vectorsγ1of C1, γ2of C2, γ3 of C3 and γ4 of C4 are affinely independent. We Reset 
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), a8 = (v4, v3)}. Indeed A1 = A \ 
4n + 3 = 16 − 16 + 3 = 3 and |A2| = 2n − 

), (v3, v1)}. One can verify that a6 = 
 of C2 andγ3 of C3 are affinely 
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∪{(vj , 
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are affinely independent. We Reset C = C ∪ 
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• Second iteration of Steps 11-22.i← 8, j = 4, k = 3. W.r.t. arc a8 = (v4, v3) ∈A1, we create C5← 𝑃௩భ,௩ೕ

௩మ ∪{(vj , vk)}∪{(vk, v1)}. So, 

A(C5) = {(v1, v2), (v2, v4), (v4, v3),  (v3, v1)}. C5contains arcs a1 = (v1, v2) and a8= (v4, v3). We find a8 = (v4, v3) ∉A(Cj), j = 1, . . . , 
4. Therefore, according to Lemma 1, incidence vectors γl of Cl, with l = 1, . . . , 5 are affinely independent. We Reset C ← 
{C1,C2,C3,C4,C5}. 
 
•First iteration of Steps 25-30. Set l ← 6, i ← 9 and k ← 3. From a9 = (v1, v3) ∈A2 and a10 = (v3, v2), we create C6 and C7 with 
A(C6) = {(v1, v3)(v3, v1)}and A(C7) = {(v3, v2)(v2, v3)}, respectively. We have a9 = (v1, v3) ∉A(C1), l = 1, . . . , 5 and a10 = (v3, v2) ∉ 
A(Cl), l = 1, . . . , 6. Therefore its corresponding incidence vectors γl, l = 1, . . . , 7 are affinely independent. Reset C ← {Cl, l = 1, . 
. . , 7}and l ← 8. 
 
• Second iteration of Steps 25-30. i← 11, k ← 4. From a11 = (v1, v4) ∈A2 and a12 = (v4, v2), we create C8 and C9 with A(C8) = {(v1, 
v4)(v4, v1)}and A(C9) = {(v4, v2)(v2, v4)}, respectively. We have a11 = (v1, v4) ∉ A(Cl), l = 1, . . . , 7 and a12 = (v4, v2) ∉ A(Cl), l = 1, . 
. . , 8. Therefore its corresponding incidence vectors γl, l = 1, . . . , 9 are affinely independent. ResetC ← {Cl, l = 1, . . . , 9}. 
 
• The algorithm terminates and returns C = {Cl, l = 1, . . . , 9}with i ← 13 > m and k = 5 > n. W.r.t the loopless and complete 
digraph of Figure 1, by applying Algorithm 1, we create (n − 1)2 = 32 = 9 elementarydicycles that incidence vectors are affinely 
independent. Below, we apply Algorithm 1 to determine the dimension of dicylepolytope P(G). 
 
Dimension of the dicyclepolytope P(G):  Balas and Oosten (2000) have shown that the dimension of the dicyclepolytope P(G) is 
(n−1)2. They first prove thatthe polytope P(G) is the projection of a special case of the prize collecting traveling salesman 
polyhedron. Thus, from the dimension of the latter polyhedron, they deduce that the one of the cycle polytope P(G) is (n − 1)2. 
Here, in a different approach, to determine the dimension of P(G), we mainly apply Algorithm 1 defined above 
and resort to results of following lemmas. 
 
Lemma 2. If n > 4, there exists a pair of arcs ai = (vj ,vk) ∈A1 and ai’= (vk, vj) ∈A1 such that by applying Algorithm 1, only unique 
and distinct dicycles, say Cl andCl’, contain arcs ai = (vj , vk) ∈A1 and ai’= (vk, vj) ∈A1, respectiveley. 
 
Proof. If n ≤ 4, one can easily verify that such a pair of arcs do not exist. So, from Steps 14 and 18 of Algorithm 1, it is clear that 
arcs of type (vk, v1) ∈A1, k = 3, . . . , n − 1 and arcs of type (v2, vj) ∈A1, j = 4, . . . , n have been used to create several elementary 
dicycles. However, arcs ai = (vj ,vk) ∈A1 andai’= (vk, vj) ∈A1, with vj≠ v1, v2 and vk≠ v1, v2, are used once to create dicycles, sayCl 
and Cl’. That is, only dicycles Cl and Cl’ contain arcs ai = (vj , vk) ∈A1 and ai’= (vk, vj) ∈A1, respectively, with vj≠ v1, v2 and vk≠ v1, 
v2. Indeed, values of k and j change in Steps 14 and 18. 
 
Lemma 3. Consider the set C of elementary dicycles Cl, l = 1, . . . , (n − 1)2 obtained by applying Algorithm 1. Let Cl’’ be the 
minimal dicycle formed by arcs ai = (vj ,vk) ∈A1 and ai’= (vk, vj) ∈A1 defined in Lemma 2. Incidence vectors of dicycles of the set 
C ∪ {Cl’’} are affinely independent. 
 
Proof. We know that incidence vectors γi, i = 1, . . . , (n − 1)2of elementary dicycles Ci, i = 1, . . . , (n − 1)2 of C, created by 
applying Algorithm 1, are affinely independent. Let show that incidence vectors of dicycles of the set C ∪ {Cl’’}are also affinely 
independent. Consider the minimal elementary dicycle Cl’’, (with γl’’as incidence vector and A(Cl’’) = {ai, ai’}). According to 
Lemma 2, there exists arcs ai and ai’ such that among all other dicycles of C ∪ {Cl’’}, only dicycles Cl, Cl’’ commonly contain the 
arc ai and only dicyclesCl’, Cl’’ commonly contain the arc ai’. So, applying the affine independence definition to the set C ∪ {Cl’’}, 
w.r.t. arcs ai and ai’, we can write the following equations λl + λl’’= 0 andλl’ + λl’’= 0, respectively. On the other hand, in opposite 
To dicycles Cl and Cl’, the minimal cycle Cl’’ do not contain the common arc a1 = (v1, v2) that belongs to all dicycles of the arc set 
C created from Algorithm 1. This implies that λl =λl’ =λl’’= 0. It then follows that all λl=0, i = 1, . . . , (n − 1)2 and λl’’= 0 showing 
that the incidence vectors of elements of C ∪ {Cl’’} are affinely independent. If n = 4, as there is no arcs ai’∈A1 and ai’’∈A1 that can 
form the minimal dicycle Cl’’, one can consider Cl’’ with A(Cl’’) = {(v3, v4), (v4, v3)}. Refering to Example 1 described above, only 
the hamiltoniandicycleC1 contains the arc (v3, v4) and only the dicycleC5contains (v4, v3). However, note that (v3, v4)∉ /∈A1. 
 
Theorem 2. The dimension of P(G) is (n − 1)2 with n ≥ 3. 
 
Proof. By virtue of Theorem 1 and Lemma 3, it’s possible to create ((n − 1)2 + 1) elementary dicycles Cl, l = 1, . . . , (n−1)2+1, 
with λl, l = 1, . . . , (n−1)2+1 as incidence vectors such that vectors λ1, λ2, . . . , 𝜆(௡ିଵ)మ,𝜆(௡ିଵ)మାଵare affinely independent. This 
completes the proof. 
 
CONCLUSION 
 
In general, in combinatorial optimization and particularly in polyhedral theory to determine the dimension of a polyhedron, one 
has to look for the rank of the affine subspace of the polyhedron. The main contribution of this paper is to address an algorithm 
that generates elementary dicycles with affinely independent incidence vectors. After, to show its usefulness, applying the 
algorithm, we determine the dimensionof elementary dicyclepolytope unlike the traditional approach that consists to determine the 
rank of the affinesubspace of the polyhedron. Note also that such an algorithm can be adapted to discuss the facetness of a given 
valid inequality of the elementary dicyclepolytope. 
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