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ARTICLE INFO ABSTRACT

This study contains a production inventory model, which developed for deteriorating items with
negative exponential probabilistic demand rate without shortage. An algebraic way is applied to find the
minimum total inventory cost (TIC). The idea of this study is to minimize the cost. A numerical
example, graphical representation of the model, graphical representation of numerical example and
sensitivity analysis are given. For calculation and sketching the graphs mathematica software has been
used.
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INTRODUCTION
In present days, demand of many products stay in pick for a period of time and later its fall down with a high rate, such as mobile
phones, hi-tech products, fashion apparels, auto mobiles. These products comes with a high demand rate at the beginning of
release, later demand rate gradually decreases and after some period of time its collapse by new version of products. Shortage has
not considered in this model, as production ends with another product. Therefore, it is important to discuss the market position of
such type of items. In this direction, Ghare and Schrader (1) were considered the effect of deteriorating items in inventory model.
They discussed the general economic order quantity model with direct spoilage and exponential deterioration. Covert and Philip
(2) extended the work of Ghare and Schrader (1) with Weibull distribution and gamma distribution.  Philip (3) deduced a three
parameter Weibull distribution for the deteriorating time. Goyal (9), Datta and Pal (10), Sahu, Bishi and Behera (6), Goswami and
Chaudhuri (11), Hariga (12), Chang and Dye (13), Goyal and Giri (14), Skouri and Papachristos (15), Sahu, Bishi and Behera (5),
Skouri et al. (16), Sarkar (17), Sahu, Bishi and Behera (4) etc., extended the inventory models with different types of deterioration
rates. Basically, inventory costs were optimized with the help of differential calculus. Many researchers have discussed different
types of algorithm for inventory model. Supply chain management generally contains buyers and suppliers, producers and
distributors, distributors and retailers, etc., in many different forms of customers. The idea, to consider a supply chain
management, is to optimize the whole system at a time. In this direction, Goyal (18) developed an integrated inventory model for a
single supplier-single buyer problem. Banerjee (19) found out a joint economic lot size model for the purchaser and the vendor.
Khouja (20) presented optimizing inventory decisions in a multi-stage multi-customer supply chain. Shin, Kim and Lee (8)
discussed on production and inventory control of auto parts on predicted probabilistic distribution of inventory. Cárdenas and
Barrón (21) developed optimum manufacturing batch size with rework in a single-stage production system. Wee and Widyadana
(22) found out economic production quantity models for deteriorating items with rework and stochastic preventive maintenance
time. Sarkar (7) presented a production-inventory model with probabilistic deterioration in two-echelon supply chain management.
Chung and Cárdenas-Barrón (23) found out a complete solution procedure for the economic production quantity and economic
production quantity inventory models with linear and fixed backorder costs. Our paper is also closely related to Sarkar (7) and
Shin, Kim and Lee (8) , in which an inventory model for deteriorating products with probabilistic deterioration in two-echelon
supply chain management discussed and also discussed on production and inventory control of auto parts on predicted
probabilistic distribution of inventory. The objective function of our model is not a concave function in general. The problem
considered in our paper is a production inventory system with probabilistic demand rate, which is also different from the inventory
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model Sarkar (7), and Shin, Kim and Lee (8). In this model, we try to optimize the cost with the help of differential calculus. We
want to find the mathematical expression of the total inventory costs and to minimize it. This paper is designed as follows:
introduction is given in section 1, notation is given in section 2, assumption is given in section 3, section 4 contains mathematical
formulation of model and its solution, and in section 5 numerical examples and sensitivity analysis are presented to illustrate the
model. At the last section, conclusion and the future extensions of the model have been made.

Notations: The notation in this paper is listed below:
P: production quantity.
p: production cost.
ℎ: Inventory holding cost per unit per time.

: Inventory level of a time point.
d: deterioration cost.
O: Ordering cost per order. rate.Demand:)( tD

.0;)( TtetD

where
t   

TIC: Total inventory cost.

Assumptions:

The model in this paper is built on the base of the following assumptions.

 Market demand is negative exponential to time.
 Market demand only exists in a limited time horizon .
 Demand cannot be backlogged.
 Ordering lead time is zero.
 Deteriorated products have no value, and there is no cost to dispose or store them.

Mathematical model: This study considers a production inventory policy in which the deterioration rate is affected by the
preservation technology investment. The decision variables are the market demand, the production cost, and the preservation
technology investment parameter. Ordering cost is not treated as separately it   included with production cost in this model.
According to the assumption, the time length is equal in all the ordering periods. The inventory level ( ) can be depicted as
Figure given below and formulated as follows:

],0[);(
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dt
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tdI
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Where ],0[;)( TtetD t   with boundary Conditions 0)(&)0(  TIPI .
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By solving equations (1) & (2) with boundary conditions PI )0( & 0)( TI respectively we get:

)(tI
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% change Changed value Original TIC Changed TIC %change in TIC

4.0


 +50

+25
+0
-25
-50

0.6
0.5
0.4
0.3
0.2

23484
23484
23484
23484
23484

25496
24481
23484
22464
21287

+8.56
+4.24
0.00
-4.34
-9.36

4


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+0
-25
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Algorithm of Optimality
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Numerical

Example: In this section, the optimality of total inventory cost and rate of production with respect to demand rate has been tested
for a supply chain with the help of numerical data. Based on the following data, the numerical example is used here to illustrate
the model. To solve the model help of MATHEMATICA software we have taken. Based on the step-by-step procedure developed
above, the optimal values of decision variables and objective function are computed for given inventory model and the results are
tabulated. The inventory parameter values:  Let 4.0 , unitRsh /4 5000Rsp  unitRsd /4.0

Then yearTyeart 73345.3&709601.01  484,23TIC

Sensitivity Analysis: We have studied the effect of change in parameter values on total inventory cost. The percentages of change
in parameters are taken in healthy difference of 25%. From the above analysis we observed that the change in holding cost makes
a significant contribution towards change in total inventory cost and change in deteriorating cost has negligible effect on total
inventory cost, which are obvious ( in electronics gadget, deterioration is negligible and holding price always maintained high).
Also, we have been observed that, if we vary two or more parameters at a time, then it will provide sometimes mixed result and
sometime comes with better result, which depends on the choice of parameters. In the last numerical table we found around 49%
of growth in total inventory cost just by contributing 50% more at p &  .

Conclusion

In this study, we represent an algebraical method to obtain the minimum cost. The demand function follows negative exponential
distribution on the time horizon ],0[ T . In sensitivity analysis of numerical example, we have omitted some fractional values from

the observed values to make our calculation little easier and those will not affect our result in a great form. The main contribution
of the model is to find minimum total inventory cost. A numerical study of this model is shown graphically. The planned method
is simple and does not require boring computational effort. To the author’s best knowledge, such type of model has not yet been
discussed in the existing literature. There are several extensions of this work could be done by taking different suitable demand
rate for any physical situation.
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