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 ARTICLE INFO   ABSTRACT 
 

 

Covariates sometimes called predictors or explanatory variables are factors that explain or predict the 
response or dependent variable. The impact of such covariates can be tested using several statistical 
tools depending on the nature of the data under consideration. This study was carried out to measure the 
distribution of zero-inflated covariates by fitting Zero-inflated Poisson, Zero-inflated Generalized 
Poisson and Zero-inflated Negative Binomial at different levels of covariates and sample size. Zero-
inflated Poisson outperformed other models when the sample size was high while Zero-Inflated 
Negative Binomial tends to perform better at smaller sample size. The choice of which model to 
consider depends on the size of sample, proportion of zeros and the number of covariate to be included 
in the model. However, ZIP and ZINB look more suitable under any of the aforementioned scenario. 
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INTRODUCTION 
 

Covariates sometimes called predictors or explanatory variables are factors that explain or predict the response or dependent 
variable. The impact of such covariates can be tested using several statistical tools depending on the nature of the data under 
consideration. Bayesian statistics has over the years grown to be a very wildly used aspect of statistics because of its flexibility and 
robustness. Bayesian approaches have on several occasions outperformed the frequentist counterparts in modeling and analyzing 
important datasets or at least provided an alternative to the frequentist approaches. It generally refers to a theory in the field of 
statistics which is predominately based on Bayesian interpretation of probability.  The degree of belief may be based on prior 
knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a 
number of other interpretations of probability, such as the frequentist interpretation that views probability as the limit of the 
relative frequency of an event after a large number of trials.(1) One frequent manifestation of overdispersion is that the incidence 
of zero counts is greater than expected for the Poisson distribution and this is of interest because zero counts frequently have 
special status.(2) Encountering an excess number of zeros is pretty common in some clinical experiments. In such cases, mixed-
distribution models like the zero-inflated Poisson and zero inflated Negative Binomial are often employed (3). Several researches 
have worked on the Bayesian component of zero-inflated models. To mention a few, Neelon et al for example described a 
practical Bayesian approach which incorporates prior information, has optimal small-sample properties and allows for tractable 
inference (3). Zero-inflated distributions (ZID) were studied from the Bayesian point of view using the data augmentation 
algorithm. The zero-inflated Poisson distribution (ZIP) and an illustrative example via MCMC algorithm were considered (4).  A 
zero‐inflated Poisson regression model with random effects to evaluate a manual handling injury prevention strategy was 
discussed in (5). A comparison study of several modeling strategies for vaccine adverse event count data in which the data were 
characterized by excess zeroes and heteroskedasticity. The compared models the Poisson, Negative Binomial (NB), zero-inflated 
Poisson (ZIP), zero-inflated Negative Binomial (ZINB), Poisson Hurdle (PH), and Negative Binomial Hurdle (NBH)(6). An 
explanation of the Bayesian linear regression was the focus of (7). In the Bayesian point of view, linear regression was formulated 
using distributions rather than point estimates with the response was not estimated as a single value but was assumed to be drawn 
from a probability distribution. The Bayesian Linear Regression was constructed such that it has the capacity to determine the 
posterior distribution for the model parameters and not to find a single best value of the model parameters. Markov Chain Monte  
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Carlo was employed to demonstrate it application. Some many other authors have contributed knowledge on Bayesian Linear 
Regression models. To mention a few (8,9,10). A flexible class of zero inflated models which includes other familiar models such 
as the Zero Inflated Poisson (ZIP) models, as special cases was introduced since a Bayesian estimation method is developed as an 
alternative to traditionally used maximum likelihood based methods to analyze such data. Simulation studies showed that the 
proposed method has better finite sample performance than the classical method with tighter interval estimates and better coverage 
probabilities. A real-life data set is analyzed to illustrate the practicability of the proposed method easily implemented using 
WinBUGS. (11). A study examining spatiotemporal patterns in inpatient hospitalizations was the motivation of proposing an 
efficient Bayesian approach for fitting zero-inflated negative binomial models. To facilitate posterior sampling, a set of latent 
variables that are represented as scale mixtures of normals, where the precision terms follow independent Polya-Gamma 
distributions was introduced. Conditional on the latent variables, inference was made from straightforward Gibbs sampling. (12) 
In this paper, we present a Bayesian linear model with zero-inflated covariates. Rigorous simulations were performed to examine 
the behavior of the Bayesian linear model under variety of situations.  
 

METHODOLOGY 
 
Let � = (��)���

�  be an nx1 vector of independent observations on a dependent variable. Px1 is the vector of regressors, Xi. The 
linear expression is given by 
 

� = �� + �,  
 

Where  � = (��
�)���

�  is a nxp matrix of regression with ith row being ��
�,� is the slope vector of the regression coefficient and 

� = (�)���
� is the vector of the random error. The observations will be assumed to be independent. Therefore,  

 

�~ ��� (0,���� ) and the column of the matrix are linearly independent, hence the rank of X is p. 
 

We are going to assume a Normal Inverse Gamma (NIG) as conjugate priors for y which is of the form 
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Where �(. ) is the Gamma function and IG(a, b) prior density for  �� is given by  
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Where a, b>0. This referred to as Normal Inverse Gamma (NIG) prior denoted as ���(��,��,�,�). 
 

The NIG probability distribution is a joint probability distribution of a vector and a scalar  ��. If (�,��)~ ���(�,�,�,�), then an 
interesting analytical form results from integrating out ��  from the joint density is obtained as 
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This is equivalent to multivariate t density MVStv 
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The likelihood of the model is given by 
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Posterior distribution from NIG prior is given by 
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Where �(�)=∫(�,��)�(�/�,��)����� is the marginal distribution of the data. 
 

Simulation Settings 
 
Four types of simulations were performed. The first simulation involved simulation of the covariates X1, X2, and X3 from Zero-
Inflated Poisson distributions. X1 was simulated from Zero-Inflation Poisson with parameters � = 0.6 ��� � = 0.8, X2 was 
simulated from ZIP with parameters � = 0.6 ��� � = 0.2 and X3 with parameters � = 0.6 ��� � = 0.2. The second type was 
simulated from Zero-Inflated Generalized Poisson (ZIGP). X1 was simulated with parameters � = 0.6 ��� � = 0.8, X2 with 
parameters � = 0.6 ��� � = 0.2 and X3 with Parameters � = 0.6 ��� � = 0.2. Likewise the third model was Zero-Inflated 
Negative Binomial with X1, X2 and X3 simulated with parameters � = 0.6 ��� � = 0.8 for X1, � = 0.6 ��� � = 0.2 for X2 and 
X3. However the error term e was simulated from Normal distribution N(0,1). The prior parameters were set as �� = 3.0,�� =
10.0, ��=30.5 and �� = 15.0 and �� =5.0 
 

RESULTS AND DISCUSSION 
 
We present the posterior means and posterior standard deviations of the Bayesian linear model with some sets of covariates 
derived from Zero-inflated Poisson (ZIP), Zero-inflated Negative Binomial (ZINB) and Zero-inflated Generalized Poisson (ZIGP). 
The first set of the models has four covariates. The precision of the models were obtained in order to determine model fit. 
 

Table 1: The Posterior means, posterior standard deviations and the Precisions at Sample size (n)  
= 15, phi=0.6, omega=0.8 with four covariates 

 

Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 15,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior 

Mean 
Posterior St.Dev Posterior Mean Posterior 

St.Dev 
Posterior Mean Posterior 

St.Dev 
β0 0.0299 0.1758 -0.0604 0.1933 0.0381 0.1846 
β1 11.1222 0.4439 11.3563 0.4325 10.2214 0.2606 
β2 29.8861 0.2624 30.3530 0.4259 30.2052 0.2911 
β3 16.4544 0.4361 14.5991 0.4328 15.0432 0.2923 
β4 6.3183 0.3529 5.9273 0.4535 6.7011 0.2778 

Precision 1.92 1.03 0.87 
 

From table1, the posterior mean for β0 = 0.0299 and β2 =0.2624 were the least in ZIP when compared with that of ZIGP and ZINB. 
Likewise the posterior mean for β1 =0.2606 and β4 = 0.2778 were the least in ZINB when compared with others. Under the above 
simulation techniques ZIP has the highest precision of 1.92. The linear model with ZIP covariates performed better when the 
sample size is 15. 
 

Table 2: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 15, phi=0.6, omega=0.8 with three covariates 

 

Model 1: y = β0 + β1x1 + β2x2 + β3x3  Sample size (n) = 15,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.0131 0.1727 -0.0543 0.1932 0.0707 0.1790 
β1 11.0839 0.4376 11.0436 0.3545 10.2962 0.2392 
β2 29.8720 0.2609 29.9850 0.3106 30.2355 0.2881 
β3 16.4769 0.4339 14.8184 0.3964 15.0639 0.2909 

Precision 1.83 1.07 0.84 
 
 

In table 2, the posterior mean for β0 = 0.1727 and β2 =0.2609 were also the least in ZIP when compared with that of ZIGP and 
ZINB. Likewise the posterior mean for β1 =0.2392 and β4 = 0.2909 were the least in ZINB when compared with others. Under the 
above simulation techniques ZIP has the highest precision of 1.83. The linear model with ZIP covariates equally performed better 
when the number of covariates was reduced to three and the sample size is 15. 
 

Table 3: The Posterior means, posterior standard deviations and the Precisions at Sample size 
 (n) = 15, phi=0.6, omega=0.8 with two covariates 

 
Model 1: y = β0 + β1x1 + β2x2  Sample size (n) = 15,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior 

Mean 
Posterior St.Dev Posterior Mean Posterior 

St.Dev 
Posterior Mean Posterior 

St.Dev 
β0 0.0475 0.1724 -0.0609 0.1927 0.0823 0.1710 
β1 10.7487 0.4264 10.9455 0.2826 10.2957 0.2392 
β2 30.3615 0.2177 29.9593 0.3055 30.2335 0.2879 

Precision 0.82 0.84 1.03 
 

From table 3, the posterior mean for β0 = 0.1710 and β1 =0.2392 were the least in ZINB when compared with that of ZIGP and 
ZIP. Likewise the posterior mean for β1 =0.2177 was the least in ZIP when compared with others.  
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Under the above simulation techniques ZINB has the highest precision of 1.03. The linear model with ZINB covariates performed 
better under two covariates linear model when the sample size is 15. 
 

Table 4: The Posterior means, posterior standard deviations and the Precisions at Sample size 
 (n) = 20, phi=0.6, omega=0.8 with four covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 20,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.0230 0.1752 -0.0390 0.1916 -0.0139 0.0762 
β1 9.9774 0.4264 10.6947 0.3001 10.0140 0.0458 
β2 30.4471 0.1908 30.4079 0.3741 30.5124 0.0452 
β3 15.7794 0.3162 14.9531 0.2993 14.9709 0.0451 
β4 6.4461 0.2969 6.4679 0.3398 6.6232 0.0446 

Precision 0.78 0.76  1.40 
 

From table 4, the posterior standard deviations of all the parameters were minimum under ZINB. That is β0 = 0.0762, β1 =0.0458, 
…, β4  =0.0446 were the least in ZINB when compared to that of ZIGP and ZIP. Under the above simulation techniques ZINB has 
the highest precision of 1.40. The linear model with ZINB covariates performed better under four covariates linear model when 
the sample size is increased to 20. 
 

Table 5: The Posterior means, posterior standard deviations and the Precisions at Sample  
size (n) = 20, phi=0.6, omega=0.8 with three covariates 

 

Model 1: y = β0 + β1x1 + β2x2 + β3x3  Sample size (n) = 20,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.0214 0.1750 -0.0395 0.1915 0.0426 0.1637 
β1 9.9508 0.4006 10.6855 0.2837 11.4020 0.5174 
β2 30.4278 0.1587 30.3851 0.2856 30.5160 0.2983 
β3 15.8004 0.2942 14.9575 0.2957 14.6921 0.3038 

Precision 1.391 0.762 0.734 
 

From table 5, the posterior standard deviation when β0=0.1637was minimum under ZINB,β1 = 0.2837 was minimum under ZIGP 
and β2 =0.1587 and β3 = 0.2942 were the least under ZIP when compared with that of ZIGP and ZINB. However, under the above 
simulation techniques ZIP has the highest precision of 1.391. The linear model with ZIP covariates performed better under three 
covariates linear model when the sample size is increased to 20. 
 

Table 6: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 20, phi=0.6, omega=0.8 with two covariates 

 
Model 1: y = β0 + β1x1 + β2x2  Sample size (n) = 20,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior 

Mean 
Posterior St.Dev Posterior Mean Posterior 

St.Dev 
Posterior Mean Posterior 

St.Dev 
β0 0.0456 0.1747 -0.0421 0.1907 0.0150 0.1614 
β1 10.3887 0.3669 10.6698 0.2618 11.3001 0.5075 
β2 30.5499 0.1522 30.3665 0.2549 30.4442 0.2898 
Precision 0.746 0.751 0.719 

 
From table 6, the posterior standard deviation when β was minimum under ZINB,β1  was minimum under ZIGP and β2 was least 
under ZIGP .However, under the above simulation techniques ZIP has the highest precision of 0.751. The linear model with ZIP 
covariates performed better under two covariates linear model when the sample size is increased to 20. 
 

Table 7: The Posterior means, posterior standard deviations and the Precisions at Sample size 
 (n) = 25, phi=0.6, omega=0.8 with four covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 25,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
P(Parameter Posterior 

Mean 
Posterior St.Dev Posterior Mean Posterior 

St.Dev 
Posterior Mean Posterior 

St.Dev 
β0 0.1073 0.1726 -0.0170 0.1898 -0.0170 0.1898 
β1 11.9137 0.6084 10.7373 0.2918 10.7373 0.2918 
β2 30.4389 0.2091 30.5137 0.3495 30.5137 0.3495 
β3 14.8626 0.2310 14.8961 0.2649 14.8961 0.2649 
β4 6.5432 0.2377 6.3985 0.3303 6.3985 0.3303 

Precision 0.891 0.864 0.905 

 
From table 7, the posterior standard deviation when β0 was minima under ZIP, β1 was least under ZIGP and ZINB, β2, β3 and β4 

were least under ZIP. However, under the above simulation techniques ZINB has the highest precision of 0.905. The linear model 
with ZINB covariates performed better under four covariates linear model when the sample size is increased to 25. 
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Table 8: The Posterior means, posterior standard deviations and the Precisions at Sample size 
 (n) = 25, phi=0.6, omega=0.8 with three covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3  Sample size (n) = 25,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.1162 0.1655 -0.0173 0.1898 0.1314 0.1581 
β1 11.9013 0.6046 10.7043 0.2714 10.0676 0.2014 
β2 30.4424 0.2083 30.4393 0.2522 30.4675 0.2179 
β3 14.8578 0.2295 14.9128 0.2592 15.4551 0.5635 

Precision 0.869 0.867 0.875 

 
From table 8, the posterior standard deviation when β0 and β1 was minima under ZINB and β2and β3 were least under ZIP. 
However, under the above simulation techniques ZINB has the highest precision of 0.875.  
 
The linear model with ZINB covariates performed better under three covariates linear model when the sample size is increased to 
25. 
 

Table 9: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 25, phi=0.6, omega=0.8 with two covariates 

 
Model 1: y = β0 + β1x1 + β2x2  Sample size (n) = 25,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.0952 0.1620 -0.0266 0.1878 0.1561 0.1551 
β1 11.9422 0.6010 10.6690 0.2502 10.0525 0.2006 
β2 30.4248 0.2064 30.4080 0.2345 30.5363 0.2005 

Precision 0.837 0.858 0.864 

 
From table 9, the posterior standard deviation for β1, β1 and β2 were least under ZINB. However, under the above simulation 
techniques ZINB has the highest precision of 0.864. 
 
The linear model with ZINB covariates performed better under two covariates linear model when the sample size is increased to 
25. 
 

Table 10: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 40, phi=0.6, omega=0.8 with four covariates 

 
 

Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 40,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior 

Mean 
Posterior St.Dev Posterior Mean Posterior 

St.Dev 
Posterior Mean Posterior 

St.Dev 
β0 0.1856 0.1490 0.0268 0.1851 0.0268 0.1851 
β1 10.2140 0.1873 10.6017 0.2320 10.6017 0.2320 
β2 30.6999 0.1448 30.5435 0.2656 30.5435 0.2656 
β3 14.8198 0.2156 14.8045 0.2114 14.8045 0.2114 
β4 6.4497 0.1673 6.6294 0.2326 6.6294 0.2326 

Precision 1.016 1.007 0.972 

 
From table 10, the posterior standard deviation for β0, β1, β2 and β4 were least under ZIP while β3 was minimum under ZIGP. 
However, under the above simulation techniques ZIP has the highest precision of 1.016. The linear model with ZIP covariates 
performed better under four covariates linear model when the sample size is increased to 40. 
 

Table 11: The Posterior means, posterior standard deviations and the Precisions at Sample size 
 (n) = 40, phi=0.6, omega=0.8 with three covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3  Sample size (n) = 40,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 
β0 0.1723 0.1423 0.0357 0.1844 0.1414 0.1449 
β1 10.2215 0.1856 10.6130 0.2311 10.3234 0.2003 
β2 30.6921 0.1424 30.6331 0.2112 30.5780 0.2023 
β3 14.8206 0.2156 14.8088 0.2112 15.0286 0.1755 
Precision 1.003 0.9881 0.966 

 
From table 11, the posterior standard deviation for β0, β1 and β2 were the least under ZIP while β3 was the least under ZIP while β3 
was least under ZIGP. However, under the above simulation techniques ZIP has the highest precision of 1.003. The linear model 
with ZIP covariates performed better under three covariates linear model when the sample size is increased to 40. 
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Table 12: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 40, phi=0.6, omega=0.8 with two covariates 

 
Model 1: y = β0 + β1x1 + β2x2  Sample size (n) = 40,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.1554 0.1408 0.0029 0.1808 0.1454 0.1428 
β1 10.2110 0.1852 10.5590 0.2233 10.3344 0.1887 
β2 30.6520 0.1340 30.5580 0.1942 30.5787 0.2023 

Precision 1.012 0.978 0.988 

 
From table 12, the posterior standard deviation for β0, β1 and β2 were the least under ZIP. However, under the above simulation 
techniques ZIP has the highest precision of 1.003. The linear model with ZIP covariates performed better under two covariates 
linear model when the sample size is increased to 40. 
 

Table 13: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 80, phi=0.6, omega=0.8 with four covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 80,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior 

Mean 
Posterior St.Dev Posterior Mean Posterior 

St.Dev 
Posterior Mean Posterior 

St.Dev 
β0 0.0466 0.1259 -0.0243 0.1708 -0.0243 0.1708 
β1 10.1520 0.1784 10.1898 0.1767 10.1898 0.1767 
β2 30.8403 0.1441 30.6442 0.1520 30.6442 0.1520 
β3 15.0206 0.1277 14.8892 0.1466 14.8892 0.1466 
β4 6.4847 0.1331 6.6316 0.1432 6.6316 0.1432 

Precision 1.035 0.993 0.979 

 
From table 13, the posterior standard deviation for β0, β1, β2 , β3 and β4 were the least under ZIP while ZIGP and ZINB performed 
the same waywas the least under ZIP while β3 was least under ZIGP. However, under the above simulation techniques ZIP has the 
highest precision of 1.003. The linear model with ZIP covariates performed better under four covariates linear model when the 
sample size is increased to 80. 
 

Table 14: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 80, phi=0.6, omega=0.8 with three covariates 

 
 

Model 1: y = β0 + β1x1 + β2x2 + β3x3  Sample size (n) = 80,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior 

Mean 
Posterior St.Dev Posterior Mean Posterior 

St.Dev 
Posterior Mean Posterior 

St.Dev 
β0 0.0432 0.1224 0.0146 0.1654 0.1395 0.0985 
β1 10.1505 0.1780 10.1913 0.1767 10.1142 0.0927 
β2 30.8398 0.1441 30.6856 0.1451 30.4496 0.0847 
β3 15.0182 0.1259 14.9171 0.1435 15.0368 0.0652 
Precision  0.969 0.985           1.034 

 
From table 14, the posterior standard deviation for β0, β1, β2 , β3 and β4 were the least under ZINB while ZIGP with precision value 
of 0.985 performed better than ZIP with precision value of 0.969. However, under the above simulation techniques ZIGP has the 
highest precision of 1.034. The linear model with ZIGP covariates performed better under three covariates linear model when the 
sample size is increased to 80. 
 

Table 15: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 80, phi=0.6, omega=0.8 with two covariates 

 
 

Model 1: y = β0 + β1x1 + β2x2  Sample size (n) = 80,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior 

Mean 
Posterior St.Dev Posterior Mean Posterior 

St.Dev 
Posterior Mean Posterior 

St.Dev 
β0 0.0499 0.1134 -0.0185 0.1552 0.1310 0.1147 
β1 10.1514 0.1778 10.1606 0.1685 10.1330 0.1263 
β2 30.8378 0.1434 30.6756 0.1441 30.5030 0.0986 

Precision 1.033 0.983 0.969 

 
From table 14, the posterior standard deviation for β0 was least under ZIP, β1and β2 were least under ZINB while ZIP with 
precision value of 1.033 performed better than ZIGP with precision value of 0.983 and ZINB of precision value of 0.969. The 
linear model with ZIP covariates performed better under two covariates linear model when the sample size is increased to 80. 
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Table 16: The Posterior means, posterior standard deviations and the Precisions at Sample size  

(n) = 150, phi=0.6, omega=0.8 with four covariates 
 
 

Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 150,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.1833 0.1015 0.0055 0.1484 0.0055 0.1484 
β1 10.0947 0.1133 10.1031 0.1237 10.1031 0.1237 
β2 30.4040 0.0267 30.6260 0.1146 30.6260 0.1146 
β3 15.0193 0.0808 15.0608 0.1043 15.0608 0.1043 
β4 6.4900 0.0925 6.4880 0.1038 6.4880 0.1038 

Precision 0.942 0.938 0.933 

 
From table 16, the posterior standard deviation for β0,β1, β2 ,β3 and β4 were the least under ZIP. The precision value for ZIP was 
0.942, ZIGP was 0.938 and ZINB was 0.933. Therefore, ZIP outperformed other models with highest precision. The linear model 
with ZIP covariates performed better under four covariates linear model when the sample size is increased to 150. 
 

 
Table 17: The Posterior means, posterior standard deviations and the Precisions at Sample size  

(n) = 150, phi=0.6, omega=0.8 with three covariates 
 

Model 1: y = β0 + β1x1 + β2x2 + β3x3  Sample size (n) = 150,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.1798 0.0963 -0.0003 0.1397 0.1719 0.0734 
β1 10.0941 0.1132 10.1026 0.1236 10.0144 0.0687 
β2 30.4040 0.1122 30.6238 0.1132 30.4480 0.0623 
β3 15.0190 0.0808 15.0593 0.1035 14.9820 0.0534 

Precision 0.932 0.934 0.935 

 
From table 17, the posterior standard deviation for β0,β1, β2 and β3 were the least under ZINB. The precision value for ZINB was 
0.935, ZIGP was 0.934 and ZIP was 0.932. Therefore, ZINB outperformed other models with highest precision. The linear model 
with ZINB covariates performed better under three covariates linear model when the sample size is increased to 150. 
 

Table 18: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 150, phi=0.6, omega=0.8 with two covariates 

 
Model 1: y = β0 + β1x1 + β2x2  Sample size (n) = 150,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior 

Mean 
Posterior St.Dev Posterior Mean Posterior 

St.Dev 
Posterior Mean Posterior 

St.Dev 
β0 0.1882 0.0894 0.0359 0.1245 0.1528 0.0957 
β1 10.0922 0.1130 10.1103 0.1229 10.1215 0.0918 
β2 30.4019 0.1119 30.6269 0.1130 30.4461 0.0845 

Precision 0.932 0.933 0.934 

 
From table 3.18, the posterior standard deviation for β0,β1 and β2 were the least under ZINB. The precision value for ZINB was 
0.9342, ZIGP was 0.933 and ZIP was 0.932. Therefore, ZINB outperformed other models with highest precision. The linear model 
with ZINB covariates performed better under two covariates linear model when the sample size is increased to 150. 
 

Table 19: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 300, phi=0.6, omega=0.8 with four covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 300,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.2087 0.0780 -0.0255 0.1248 -0.0255 0.1248 
β1 9.9052 0.0719 10.0304 0.0829 10.0304 0.0829 
β2 30.5110 0.0642 30.5989 0.0834 30.5989 0.0834 
β3 14.9429 0.0761 15.0509 15.0509 15.0509 0.0779 
β4 6.4678 0.0694 6.5478 6.5478 6.5478 0.0755 

Precision 1.029 0.978 1.020 

 
From table 19, the posterior standard deviation for β0,β1, β2 , β3 and β4 ,were the least under ZIP. The precision value for ZIP was 
1.029, ZIGP was 0.978 and ZINB was 1.020. Therefore, ZIP outperformed other models with highest precision. The linear model 
with ZIP covariates performed better under four covariates linear model when the sample size is increased to 300. 
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Table 20: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 300, phi=0.6, omega=0.8 with three covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3  Sample size (n) = 300,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.1951 0.0723 0.0090 0.1123 0.1719 0.0734 
β1 9.9060 0.0719 10.0323 0.0828 10.0144 0.0688 
β2 30.5094 0.0641 30.6019 0.0833 30.4480 0.0623 
β3 14.9445 0.7600 15.0517 0.0779 14.9820 0.0534 

Precision 1.027 1.021 1.018 

 
From table 20, the posterior standard deviation for β0 was least under ZIPbut β1, β2 ,and β3 ,were the least under ZINB. The 
precision value for ZIP was 1.027, ZIGP was 1.021 and ZINB was 1.018. Therefore, ZIP outperformed other models with highest 
precision. The linear model with ZIP covariates performed better under three covariates linear model when the sample size is 
increased to 300. 
 

Table 21: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 300, phi=0.6, omega=0.8 with two covariates 

 
Model 1: y = β0 + β1x1 + β2x2  Sample size (n) = 300,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 
β0 0.1751 0.0669 0.0434 0.0996 0.1647 0.0703 
β1 9.9066 0.0719 10.0377 0.0824 10.0120 0.0684 
β2 30.5085 0.0641 30.6055 0.0831 30.4488 0.0623 
Precision 1.025 1.019 1.018 

 
From table 21, the posterior standard deviation for β0 was least under ZIP but β1 and β2  ,were the least under ZINB. The precision 
value for ZIP was 1.025, ZIGP was 1.019 and ZINB was 1.018. Therefore, ZIP outperformed other models with highest precision.. 
The linear model with ZIP covariates performed better under two covariates linear model when the sample size is increased to 
300. 
 

Table 22: The Posterior means, posterior standard deviations and the Precisions at Sample size 
 (n) = 500, phi=0.6, omega=0.8 with four covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 500,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.0454 0.0620 -0.1290 0.1031 -0.1290 0.1031 
β1 9.9785 0.0566 10.0517 0.0655 10.0517 0.0655 
β2 30.5322 0.0512 30.6288 0.0647 30.6288 0.0647 
β3 15.0323 0.0634 14.9755 0.0624 14.9755 0.0624 
β4 6.5727 0.0548 6.6275 0.0601 6.6275 0.0601 

Precision 0.985 0.972 0.973 

 
From table 22, the posterior standard deviation for β0 , β1, β2 ,and β4 ,were the least under ZIP but β3 was least under ZIGP and 
ZINB. The precision value for ZIP was 0.985, ZIGP was 0.972 and ZINB was 0.973. Therefore, ZIP outperformed other models 
with highest precision. The linear model with ZIP covariates performed better under four covariates linear model when the sample 
size is increased to 500. 
 

Table 23: The Posterior means, posterior standard deviations and the Precisions at Sample size 
 (n) = 500, phi=0.6, omega=0.8 with three covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 500,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.0765 0.0574 -0.0288 0.0916 0.1160 0.0587 
β1 9.9774 0.0566 10.0508 0.0655 10.0381 0.0500 
β2 30.5309 0.0512 30.6329 0.0647 30.4853 0.0491 
β3 15.0312 0.0634 14.9773 0.0624 14.9195 0.0524 

Precision 0.969 0.972 0.977 

 
From table 23, the posterior standard deviation for β0 was least under ZIP. However,  β1, β2 , β3 and β4 ,were the least under ZINB. 
The precision value for ZIP was 0.969, ZIGP was 0.972 and ZINB was 0.977. Therefore, ZINB outperformed other models with 
highest precision. The linear model with ZINB covariates performed better under three covariates linear model when the sample 
size is increased to 500. 
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Table 24. The Posterior means, posterior standard deviations and the Precisions at Sample size (n) = 500, phi=0.6, 
omega=0.8 with two covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 500,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 
β0 0.0876 0.0528 -0.0442 0.0813 0.0824 0.0544 
β1 9.9770 0.0566 10.0485 0.0651 10.0369 0.0500 
β2 30.5298 0.0511 30.6322 0.0647 30.4834 0.0491 
Precision 0.969 0.968 0.976 

 
From table 24, the posterior standard deviation for β0 was least under ZIP. However β1, β2 andβ3,were the least under ZINB. The 
precision value for ZIP was 0.969, ZIGP was 0.968 and ZINB was 0.976. Therefore, ZINB outperformed other models with 
highest precision. The linear model with ZINB covariates performed better under two covariates linear model when the sample 
size is increased to 500. 
 

Table 25: The Posterior means, posterior standard deviations and the Precisions at Sample size 
 (n) = 1000, phi=0.6, omega=0.8 with four covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 1000,  phi=0.6, omega=0.8 
Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 
β0 0.0954 0.0437 -0.0139 0.0762 -0.0139 0.0762 
β1 10.0200 0.0385 10.0140 0.0458 10.0140 0.0458 
β2 30.5071 0.0416 30.5124 0.0452 30.5124 0.0452 
β3 14.9515 0.0410 14.9709 0.0451 14.9709 0.0451 
β4 6.4895 0.0419 6.6232 0.0446 6.6232 0.0446 
Precision 0.963 0.957 0.960 

 
From table 25, the posterior standard deviation for β0, β1, β2 and β4 ,were the least under ZIP. The precision value for ZIP was 
0.963, ZIGP was 0.957 and ZINB was 0.960. Therefore, ZINB outperformed other models with highest precision. The linear 
model with ZIP covariates performed better under four covariates linear model when the sample size is increased to 1000. 
 

Table 26: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 1000, phi=0.6, omega=0.8 with three covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 1000,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev Posterior Mean Posterior St.Dev 

β0 0.0915 0.0408 0.0818 0.0679 0.0688 0.0419 
β1 10.0199 0.0385 10.0158 0.0458 10.0362 0.0352 
β2 30.5075 0.0416 30.5159 0.0452 30.5376 0.0332 
β3 14.9513 0.0410 14.9696 0.0451 14.9549 0.0340 

Precision 0.957 0.956 0.960 

 
From table 26, the posterior standard deviation for β0was least under ZIP but β1, β2 ,and β3 ,were the least under ZINB. The 
precision value for ZIP was 0.957, ZIGP was 0.956 and ZINB was 0.960. Therefore, ZINB outperformed other models with 
highest precision. The linear model with ZIP covariates performed better under three covariates linear model when the sample size 
is increased to 1000. 
 

Table 27: The Posterior means, posterior standard deviations and the Precisions at Sample size  
(n) = 1000, phi=0.6, omega=0.8 with two covariates 

 
Model 1: y = β0 + β1x1 + β2x2 + β3x3 +         β4x4  Sample size (n) = 1000,  phi=0.6, omega=0.8 

Distribution ZIP ZIGP ZINB 
Parameter Posterior 

Mean 
Posterior St.Dev Posterior Mean Posterior 

St.Dev 
Posterior Mean Posterior 

St.Dev 
β0 0.0740 0.0381 0.0594 0.0591 0.0478 0.0387 
β1 10.0188 0.0385 10.0150 0.0458 10.0353 0.0352 
β2 30.5054 0.0416 30.5154 0.0452 30.5388 0.0332 

Precision 0.956 0.956 0.958 

 
From table 27, the posterior standard deviation for β0 was least under ZIP but β1, β2 ,β3 ,were the least under ZINB. The precision 
value for ZIP was 0.956, ZIGP was 0.956 and ZINB was 0.958. Therefore, ZINB outperformed other models with highest 
precision. The linear model with ZIP covariates performed better under two covariates linear model when the sample size is 
increased to 1000. 
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DISCUSSION AND CONCLUSION 
 
Bayesian estimation of the posterior means, the standard deviations and precisions of the models were estimated. The precision 
was used as model selection criterion. The analysis revealed the important role proportions of zero, sample size and number of 
covariates play in model selection. From the analysis, at low sample size of 20 for instance, ZINB outperformed when covariates 
was four, ZIGP when covariate was three and ZINB when covariate was two. Likewise at sample size of 40, ZIP outperformed 
other models at all levels of covariates. At sample size of 80, ZIP also outperformed when covariate was four and two whereas 
ZINB outperformed when covariate was three. In like manner, when the sample size was 300 ZIP outperformed at all levels of 
covariate whereas ZINB outperformed when covariate level was three and two but ZIP outperformed when covariate level was 
four. However, at sample size of 1000, ZINB outperformed when covariate level was three and two while ZIP outperformed when 
covariate level was four. In summary, the choice of which model to consider depends on the size of sample, proportion of zeros 
and the number of covariate to be included in the model. However, ZIP and ZINB look more suitable under any of the 
aforementioned scenario.  
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