
      
  
 
 

 

 
 

 
 
 

 

RESEARCH ARTICLE 
 

THEORITICAL ANALYSIS OF THE GENERALIZED ODD LINDLEY-GOMPERTZ DISTRIBUTION 
 

1,*Kuje, S., 2Abubakar, Muhammad Auwal, 2Alhaji, Ismaila Sulaimanand 1Lasisi, K.E. 
 

1Department of Mathematical Science, ATBU, Bauchi,   Nigeria 
2Department of   Statistics, NSUK,   Keffi,   Nigeria 

 
 

 

 ARTICLE INFO   ABSTRACT 
 

 

In this article, we proposed another extension of the Gompertz distribution called the “Generalized odd 
Lindley-Gompertz distribution’’. The probability density function (pdf) and the cumulative density 
function (cdf) of the new distribution were defined using the idea of Odd-Lindley G family proposed by 
Gomes-Silva et, al (2017). Analytical expressions for some mathematical quantities comprising 
moments, moment generating function, characteristics function and order statistics were presented. 
Some properties of the new distribution have been derived and discussed and the method of maximum 
likelihood is used to estimate the parameter of the proposed distribution. The performance of the 
proposed model has been evaluated by using real life dataset. Finally, graphical illustration and analysis 
are presented with recommendation for application.  

 
 
 
 
 

 

 
 
 
 
Copyright © 2020, Kuje et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 
 
 

INTRODUCTION 
 
The art of proposing generalized classes of distributions has attracted theoretical and Applied statisticians due to their flexible 
properties. Most of the generalizations are Developed for one or more of the following reasons: a physical or statistical theoretical 
Argument to explain the mechanism of the generated data, an appropriate model that has Previously been used successfully, and a 
model whose empirical fit is good to the data. The probability density function and cumulative distribution function of the 
generalized odd lindley-Gompertz distribution can be defined as; 
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respectively.  
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 where   is the scale parameter of the Lindley distribution. The Gompertz distribution (GD) is both skewed to the right and to the 
left.  
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It is an extension of the exponential distribution (ED) and is commonly used in many applied problems, particularly in lifetime 
data analysis (Johnson et al., 1995). The GD is applied in the analysis of survival, in some sciences such as gerontology (Brown 
and Forbes 1974), computer (Ohishi et al., 2009), biology (Economos 1982), and marketing science (Bemmaor and Glady 2012). 
The hazard rate function of GD is an increasing function and often applied to describe the distribution of adult life spans by 

actuaries and demographers (Willemse & Koppelaar 2000). The Gompertz distribution with parameters   and   has the 

cumulative distribution function (cdf) and probability density function (pdf) given by: 
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respectively. 
 

 For 0, 0, 0x      where   and   are the model parameters respectively. 

 
2. The Generalized Odd Lindley-Gompertz Distribution. (GOLGD) 
 
The cumulative distribution function (cdf) of the Odd Lindley-G family of distributions according to Gomes-Silva et al. (2017) is 
defined as, 
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θ= is the additional scale parameter of the Lindley distribution 
α= is the scale parameter of the Linley distribution 
β=is the shape parameter of the Odd-Lindley distribution 
t= is a real number.  

Where ( ; )G x  is the cdf of any continuous distribution which depends on the parameter vector �, '( ; ) 1 ( ; )G x G x    and 

Ө>0 is the scale parameter. 
 
Using integration by substitution in the equation above and evaluating the integrand in equation yields 
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Therefore, equation (3.1) is the cumulative distribution function (cdf) of the Odd Lindley-G family of distributions proposed by 
Gomes-Silva et al. (2017) and the corresponding pdf of the Odd Lindley-G family can be obtained from equation (3.1) by taking 
the derivative of the cdf 
 
with respect to x and is obtained as:  
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where ( ; )g x  and ( ; )G x  are the pdf and the cdf of any continuous distribution respectively which depends on the parameter 

vector   and 0   is the scale parameter. The major benefit of (3.2) is to offer more flexibility to extremes of the pdfs and 

therefore it becomes suitable for analyzing data with high degree of asymmetry. The Gompertz distribution with parameters α>0 
and β>0 has the cumulative distribution function (cdf) and probability density function (pdf) given by: 
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And 
 

    1
x

x eg x e e





 
   (3.4) 

 
Respectively. 
 

 For where  and   are the model parameters respectively. 

 
Using equation (3.3) and (3.4) in (3.1) and (3.2) and simplifying, we obtain the cdf and pdf of the Odd Lindley-Gompertz 
distribution (OLnGD) as follows:  
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respectively. Hence equation (3.5) and (3.6) are the cdf and pdf of the Odd Lindley-Gompertz distribution.

  

10794               Asian Journal of Science and Technology, Vol. 11, Issue, 03, pp.10792-10803, March, 2020 
 



The following is a graphical representation of the pdf and cdf of the Odd Lindley-Gompertz distribution. Given some values for 
the parameters α, β and Ө, we provide some possible shapes for the pdf and the cdf of the OLnGD as shown in figure 3.1 and 3.2 
below: 
 

 
 

Fig. 3.1.  PDF of the OL n GD for different values of , &a b c     as shown on the key in the plot above 

 

 
 

Fig. 3.2. CDF of the OL n GD for different values of , &a b c     as shown on the key in the plot above
 

 
From the above cdf plot, the cdf increases when X increases, and approaches 1 when X becomes large, as expected. 
 
3.2 Properties of the Propose Distribution 

 
3.2.1 Moments 

 
Moments of a random variable are very important in distribution theory because some moments are used to study some of the 
most important features and characteristics of a random variable such as mean, variance, skewness and kurtosis.  
Let X denote a continuous random variable, the nth moment of X is given by; 
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Taking f(x) to be the pdf of the Odd Lindley-Gompertz distribution as given in equation (3.6) and substituting in equation (3.7), we 
get the following results. 
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Expansion and simplification of the pdf 
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By expanding the exponential term in (3.8) using power series, we obtain: 
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Making use of the result in (3.9) above, equation (3.8) becomes 
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Also, using the generalized binomial theorem, we can write the last term from the above result as: 
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Again making use of the expansion in (3.11) above, equation (3.10) can be written as: 
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Using the power series expansion in the above result, we have 
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Using power series expansion on the last term in the numerator part of equation (3.14), we have: 
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Now, substituting equation (3.15), the power series expansion in equation (3.14) above, one gets: 
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Simplifying (3.16) above results in the following: 
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Also, using integration by substitution method in equation (3.18); we obtain the following: 
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Substituting for u and dx  in equation (3.18) and simplifying; we have: 
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Thus we obtain the nth ordinary moment of X for the Odd Lindley-Gompertz distribution as follows: 
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The Mean 

The mean of the OLnGD can be obtained from the nth moment of the distribution when n=1 as follows:  
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Also the second moment of the OLnGD is obtained from the nth moment of the distribution when n=2 as 
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The Variance 

 
The nth central moment or moment about the mean of X, say ��, can be obtained as 
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The variance of X for OLnGD is obtained from the central moment when n=2, that is, 
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The variation, skewness and kurtosis measures can also be calculated from the non-central moments using some well-known 
relationships. 
 
3.2.2 Moment Generating Function 

 
The moment generating function (mgf) is a simple way of arranging all the respective moments in a single function. It produces all 
the moments of the random variable by way of differentiation i.e., for any real number say k, the kth derivative of ��(�) evaluated 
at � = 0 is the kth moment ��

�  of X. 
 
The mgf of a random variable X can be obtained by 
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Using the result in equation (3.27) and simplifying the integral in (3.26), therefore we have;  
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Where n and t are constants, t is a real number and ��

�  denotes the nth ordinary moment of X and equation (3.28) is the moment 
generating function of the Odd Lindley-Gompertz distribution. 
 
3.2.3 Characteristics Function 

 
The characteristics function has many useful and important properties which give it a central role in statistical theory. Its approach 
is particularly useful for generating moments, characterization of distributions and in analysis of linear combination of 
independent random variables. 
 
The characteristics function of a random variable X is given by; 
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Simple algebra and power series expansion proves that 
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Where ���
�  and �����

� are the moments of X for n=2n and n=2n+1 respectively and can be obtained from ��
�  in equation (3.20) 

 
3.3 Order Statistics 

 
Sample values such as the smallest, largest, or middle observation from a random sample provide important information. For 
example, the highest rainfall, flood or minimum temperature recorded during past years might be useful when planning for future 

emergencies. Let  1
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Where  f x  and  F x  are the pdf and cdf of the OLnGD respectively.  

 

Using (3.5) and (3.6), the pdf of the thi  order statistics :i nX , can be expressed from (3.27) as; 
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Hence, the pdf of the minimum order statistic  1
X  and maximum order statistic  n

X  of the OLnGD are given by; 

 

 

 
 

 

   
  

2 121
1

1:
0

1
( ) exp 1

1

1
1

1

( 1)

1 exp 1
1

x

x
xn k

n
k

k

en ex n
k

xe
xe

xe

e ef e

e
e

e


 









 
 
 













                 
 

 


 



      
     

(3.33)

 

and 

 

 

 
 

 

   
  

2 12
1

:

1

( ) exp 1
1

1
1

1
1 exp 1

1

x

x
x

n n

n

e
ex n

xe xe
xe

e ef e

e
e

e


 









 
 
 













 
           

 

 


 

      
     

(3.34)

 

respectively. 
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3.5 Estimation of Parameters 

 
Let X1, - - -,Xn be a sample of size ‘n’ independently and identically distributed random variables from the OLnGD with unknown 
parameters α, β and Ө defined previously. The pdf of the OLnGD is given as: 
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Taking the natural logarithm of the likelihood function, i.e., Let,    1 2log , ,....., / , ,nl n L X X X   
, 

such that 

 

 

       12

1 1 1

log 2 log log 1 1 1
xi

i

n n n
x

i
i i i

el n n n x n e e



    



  

          
 

  
 (3.36) 

 

Differentiating �(�) partially with respect to Ө, α and β respectively gives; 
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Equating equations (3.37), (3.38) and (3.39) to zero and solving for the solution of the non-linear system of equations will give us 

the maximum likelihood estimates of parameters , , ,and   respectively. However, the solution cannot be obtained 

analytically except numerically with the aid of suitable statistical software like Python, R, SAS, e.t.c when data sets are given. 
 
3.6 Conclusion 
 
In this paper, we introduced and studied some mathematical and statistical properties of a new distribution, the Generalized Odd 
lindley Gompertz Distribution (GOGD). We have derived explicit expression for its survival function, order statistics and ordinary 
moment. It was found that the GOGD has various shape patterns depending on the parameter values. For example, negatively 
skewed with a higher degree of kurtosis. Some plots for the cdf and pdf of the OLGD show that the GOGD can be used to model 
variables whose chances of success in a given interval decreases with increase in time whereas that of failure increases as time 
increases i.e. it has an increasing failure rate useful for modeling lifetime data. We also obtained the pdf of its minimum and 
maximum order statistics. The estimation of the model parameters is being done using the method of maximum likelihood 
estimation. 
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