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 ARTICLE INFO    ABSTRACT 
 

 

Brassinosteroids (BRs) are a novel group of plant growth regulators (PGRs) that exhibit pronounced 
growth promoting activities. Extensive reach on the role of BRs in positively modulating a wide range 
of processes, including source/sink relationship, seed germination, photosynthesis, senescence, 
photomorphogenesis, flowering and responses to abiotic and biotic stresses had been  carried out in the 
past fourty years. The present mini- review highlights on various physiological roles of BRs in plants in 
the past decade. 
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INTRODUCTION 
 

Overview of Brassinosteroids (BRs) 
 

Brassinosteroids (BRs) are well known as a novel type of 
polyhydroxy steroidal plant growth regulators exhibiting 
significant growth-promoting influence (Vardhini and Anjum, 
2015). The initial discovery of BRs way back in the 1970s by 
Mitchell and his co-workers gave an insight in the existence of 
such growth promoting substances subsequently followed by 
its extraction from the pollen of Brassica napus L. paved the 
way for research of this wonderful PGR (Grove et al., 1979). 
Vardhini (2013b) observed that BRs can be aptly classified as 
C27, C28 or C29 BRs according to the number of carbons in their 
structure. Further, Vardhini (2013a) also observed that 
brassinolide (BL), 28-homobrassinolide (28-HomoBL) and 24-
epibrassinolide (24-EpiBL) are the three bioactive BRs that are 
extensively used in most physiological and experimental 
research studies. Rao et al. (2002) stated that BRs are a new 
group of plant growth hormones that perform a variety of 
physiological roles like growth (Wang et al 2016), seed 
germination (Guo et al., 2014), rhizogenesis (Vragovic et al., 
2015), senescence (Zhu et al., 2015) etc. and also confer 
resistance to plants against various abiotic stresses and 
reported in most of the plants. Recently Tarkowska et al. 
(2016) reported that around 22 natural BRs could be 
determined in a minute sample of plant tissue.  
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BRs are usually supplemented  to plants at different stages of 
its life cycle viz., vegetative stage (Vardhini and Rao, 1998), 
flowering stage (Vardhini, 2013a), meiosis stage (Saka et al., 
2003), grain filling stage (Vardhini, 2013a), antheis stage (Liu 
et al., 2006) etc. in the form of  foliar spray (Vardhini et al., 
2012), seed treatment (Kartal et al., 2009), root application 
(Song et al., 2006) and even as shot gun approach (Hayat  et al 
., 2010). BRs are also reported to exhibit synergistic effects 
with other PGRs like ABA (Yang et al., 2016), ethylene (Foo 
et al., 2016; Zhu et al., 2016), gibberellins (Foo et al., 2016; 
Unterholzne et al., 2016), auxins (Liu et al., 2016b), 
cytokinins (Yuan et al., 2015) salicylic acid (Litvinovskaya et 
al., 2016), jasmonates (Peng et al. 2011) etc. 
 

BRs and Germination of Seeds and Seedling Growth 
 

BRs have known to play pivotal roles in regulating the process 
of seed germination as well as seedling growth of various crop 
plants. BRs were capable of enhancement of seed germination 
as well as seedling growth in Leymus chinensis (Guo et al., 
2014). Bukhari et al (2016) observed that the exogenous 
application of 24-epiBL mitigated chromium stress in tobacco 
seedlings by positively regulating various changes in 
ultrastructure and physicochemical traits.  Ahammed et al., 
(2012) found the efficacy of 24- epiEBL to improve seed 
germination and early development of tomato seedling grown 
under the phenanthrene stress.  He et al. (2016) studied that 
application of epiBL conferred tolerance against zinc stress by 
regulating the antioxidative enzyme activities, contents of 
osmolytes as well as hormonal balance in Solanum melongena 
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seedlings. Wu et al. (2015) reported that foliar spray 
application of 24-epiBL enhanced the rate of photosynthesis 
and anti-oxidant defense system in eggplant (Solanum 
melongena L.) seedlings subjected to chilling stress. Further, 
Wu et al. (2016) also reported that exogenous application of 
24-epiBL alleviated the toxicity induced by Zinc metal in 
eggplant (Solanum melongena L.) seedlings by modulating the 
glutathione-ascorbate-dependent detoxification pathway which 
might be one of the regulatory mechanisms to increase seed 
germination as well as seedling growth. 
 
BRs and Rhizogenesis 
 
Wei and Li (2016) studied that supplementation of BRs 
positively regulated root growth, development and symbiosis. 
Foliar supplementaion of BRs to French bean plants exhibited 
improved growth of root epidermal cells (Cheng et al., 2014). 
BL supplied in different concentrations increased root growth 
in potatoes by alleviating saline stress (Hu et al., 2016). 
Vragovic et al. (2015) studied through translatome analyses 
that are capable to capture the opposing tissue specific to BR-
signals to positively modulate the differentiation of root 
meristems.  
 
BRs and Photomorphogenesis 
 
Earlier research candidly showed that exogenous application 
of BRs resulted in expansion of Arabidopsis thaliana leaves 
(Zhiponova et al., 2013), improvement of leaf nutrition in 
Camellia oleifera (Zhou et al., 2013), closure of leaf stomata 
in Solanum lycoperscion (Xia et al., 2014) and also 
development of leaf stomata (Kim et al., 2012). Wang et al. 
(2016) studied that exogenous application of BL ameliorated 
chilling stress in Leymus chinensis (Trin.) Tzvel. by 
modulating morphological, physiological and biochemical 
traits., Foliar treatment of BL enhanced the various aspects of 
growth and anatomical features in leaves of dwarf pear 
cultured in in vitro conditions (Chen et al., 2014) Exogenous 
application of BL altered the morphological and physiological 
traits of Leymus chinensis (Trin.) Tzvelev subjected to room 
and high temperatures (Niu et al., 2016). Sun et al. (2015a) 
observed that BR- signaling positively regulated leaf erectness 
in Oryza sativa by controlling a very specific U-type of cyclin 
as well as proliferation of cells. Li  et al. (2015) reported that 
supplementation of 24-BL elevated the different 
photosynthetic characteristics of cherry tomato. BR- signaling 
modulated the hyponastic growth in Arabidopsis thaliana 
caused due to submergence (Youn et al. 2016). Further, Tong 
and Chu (2016) reported that BRs regulated the processes of 
gibberellin synthesis to promote cell elongation in rice plants. 
Xu et al. (2015) reported that BdBRD1, a BR C-6 oxidase 
homolog in Brachypodium distachyon L. was essential for 
multiple organ development proving that BRs played a 
positive role in plant photomorphogenesis.  
 
BRs and Photoperoidism and Flower Development 
 
Application of BRs positively regulated the various aspects of 
photoperoidism and flower development in plants. Zhu et al. 
(2015) studied that exogenous treatment of BRs increased rice 
pollen grain development by triggering the expression of 
carbon starved anthers. Further, Ye et al. (2010) also reported 
that BRs controlled the male fertility in Arabidopsis by 
positively monitoring the expression of different key genes 

that are responsible in the development of anthers as well as 
pollens. Even, BRs played a pivotal role in controlling the sex 
expression and flower development of Cucurbita pepo 
(Manzano et al., 2011). Application of BL improved the 
development of Brassica napus microspore-derived embryos 
(Belmonte et al., 2011). Zhu et al. (2015) reported that 
supplementation of BRs promoted the development of rice 
pollen grains by triggering expression of carbon starved 
anther.  
 
BRs and Photosynthesis 
 
Application of BRs increased the survival rate of winter rye 
(Secale cereale L.) by enhancing its photosynthetic capacity 
and carbohydrate metabolism during the cold acclimation 
process (Pociecha et al., 2016). Spraying of epiBL to pea 
plants 48 h prior to UV-B exposure alleviated its detrimental 
effects on chlorophyll ‘a’ and ‘b’, carotenoids and pheophytin 
(Dobrikova et al., 2013).  Filova et al. (2013) also reported 
that BRs eliminated the toxic effect of Cu in 6 sunflower 
cultivars (Helianthus annuus L. cv. Belinda, cv. Codiwer, cv. 
ESPrim, cv. MAS 95, cv. MAS 97 and cv. Spirov) by 
decreasing the metal stress and enhancing chlorophylls, 
proline and relative water content (RWC). The application of 
BRs resulted in retarding the rate of chlorophyll degradation of 
light-harvesting complexes in chloroplast thylakoid 
membranes (Hola, 2011). Further, Li et al (2016) reported that 
over expression of a BR-biosynthetic gene Dwarf markedly 
enhanced the photosynthetic capacity in tomato plants by the 
activation of Calvin cycle enzymes. 
 
BRs and Nitrogen metabolism 
 
The effect of BRs on the different pathways of nitrogen 
metabolism needs more ample of research. BRs were reported 
to enhance the uptake of ammonium ions that were required 
during the regulation of ammonium transporter and modulated 
the N-metabolism genes in Arabidopsis (Zhao et al., 2016). It 
was also revealed that application of BRs enhanced the root 
nodulation and nitrogrenase activity in soya bean plants (Miao 
et al., 2013). 
 
BRs and Senescence 
 
Supplementation of 24-EBL protected dopaminergic cells 
against apoptosis (Carange et al., 2011). Zhu et al. (2010) 
reported that BRs promoted senescence of jujube fruit during 
the process of its storage. Further, it was reported that 
exogenous application of 24-epiBL during postharvest stages 
significantly enhanced the quality and resistance of Satsuma 
mandarin (Citrus unshiu). The ability of BRs in elevating the 
quality as well as ethylene synthesis during the postharvest 
time of tomato was observed by Zhu et al. (2015). 
 
BRs and Biotic Stresses 
 
The plants are adept to various stresses caused by the biotic 
beings like bacteria, fungi, insects, nematodes and viruses in 
their day to day life called as biotic stresses. The plants have 
evolved different defense mechanisms to increase their 
resistance and improve their potential growth and metabolism 
and supplementation of PGRs is one of the mechanisms 
employed by research scientists to mitigate these biotic 
stresses. BRs have played pivotal role in overcoming the 

9321                             Vidya Vardhini, An overview on the various physiological roles of brassinosteroids in the past decade – a mini review 
 



variety of biotic stresses caused by fungi (Bitterlich et al., 
2014; Liu et al., 2016a), bacteria (Canales et al., 2016), viruses 
(Tao et al., 2015; Deng et al., 2016a; b), nematodes (Kaur et 
al., 2013), and insects (Kaur et al. 2013; Miyaji et al., 2014).  
 
BRs on Abiotic Stresses 
 
BRs are potential PGRs capable of mitigating the negative 
effect of stresses in plants caused by non-living matter of earth 
called as abiotic stresses. Du and Pooviah (2005) reported that 
BRs are plant-specific steroid hormones that have an important 
role in coupling environmental factors, especially light, with 
plant growth and development. BRs have been reported to 
alleviate various abiotic stresses in plants high temperature 
(Sonjaroon et al., 2016; Niu et al., 2016), low temperature in 
terms of chilling (Pociecha et al., 2016; Wang et al., 2016) as 
well as freezing (Eremina et al., 2016), salt (Shu et al., 2016; 
Zhu et al., 2016), light (Li et al., 2015; Wu and Lu, 2015; Cui 
et al., 2016), darkness ( Zhang et al., 2015a), drought (Mahesh 
et al., 2013; Xiong et al., 2013), heavy metals (Surgun  et al., 
2016; Yusuf et al. 2016), herbicides (Sun et al., 2015b;c 
Zhang et al., 2015b), pesticides (Wang et al., 2015; Zhou et 
al., 2015; Yin et al., 2016; Sharma et al., 2016b), insecticides 
(Xia et al., 2011), organic pollutants (Sharma et al., 2015), 
inorganic pollutants (An et al., 2016; Li et al., 2016b) etc. and 
the ability of overcoming these stresses may be by regulating 
the antioxidative defense mechanisms of the plants (Sharma et 
al., 2016a)  
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