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This review paper deals with recalling some applications of polynomial approximation results to 
Markov moment problem as well as to invariance of the unit ball of �� -type spaces, with respect to 
some bounded linear operators. Polynomial approximation on special unbounded subsets is mainly 
discussed. One solves partially the difficulty created by the fact that in several real dimensions positive 
polynomials are not sums of squares. Most of our characterizations are expressed in terms of signatures 
of products of quadratic mappings. Main such results were published by the authors in the period 2007-
2015. Some applications of these theorems, which have been published more recently, are also recalled. 
Earlier results on extension of linear operators with one or two constraints are applied as well. 
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1. INTRODUCTION 
 
The moment problem is an interpolation problem with one or two constraints. The “lower” constraint is usually the positivity of 
the linear solution. Sometimes, this makes possible representing the solution by means of a positive scalar or vector measure. The 
“upper” constraint could refer to the continuity of the solution and “measures” its norm. The latter constraint appears in Markov 
moment problem (Krein and Nudelman, 1977; Lemnete-Ninulescu and Olteanu, 2017; Mihăilăet al., 2007; Mihăilăet al., 2007; 
Olteanu and Olteanu, 2007, 2009; Olteanu, 1991; Olteanu, 1996; Olteanu, 2013; Olteanu, 2014; Olteanu, 2015). In the classical 
moment problem (Akhiezer, 1965), the values of the solution at polynomials are given, and the positivity of the solution is 
required. The first question is to find and prove necessary and sufficient conditions for the existence of a linear extension from the 
subspace of polynomials to a larger function space, such that some constraints to be verified. The next two problems are 
establishing eventually the uniqueness and constructing the solution. So, the moment problem is an extension problem of a linear 
functional (or operator), with one or two constraints. In the case when our function space is the space of all real continuous 
functions on a compact subset � ⊂ ℝ�, one applies the classical Weierstrass approximation theorem. Thus, in this case, the linear 
continuous solution (if any) is unique, having (given) prescribed values (called moments) at basic polynomials 

�� = ��
�� ⋯ ��

��, �� ∈ ℕ, � ∈ {1, … , �}, � = (��, … , ��) ∈ �, � = (��, … , ��) ∈ ℕ� . If one replaces the compact � by an unbounded 

closed subset, more powerful polynomial approximation results are required in order to deduce the density of the subspace of 
polynomials in some function spaces, such as ��- type spaces. This is the motivation of recalling the results from section 2. The 
moment problem, as well as other questions in analysis is related to the analytic form of positive polynomials on some closed 
subsets, in terms of sums of squares of some other polynomials (Akhiezer, 1965; Berg et al., 1979;  Cassier, 1984; Choquet, 1962; 
Lemnete-Ninulescu and Olteanu, 2017; Mihăilă et al., 2007; Olteanu and Olteanu, 2007, 2009; Putinar, 1993; Schmüdgen, 1991; 
Schmüdgen, 2017; Vasilescu, 2003). Such representations allow writing the values of a linear functional at a positive polynomial 
in terms of quadratic mappings or products of quadratic mappimgs, the latter generalizing classical results from the one 
dimensional case to several dimensions. Such techniques are applied in both sections 3 and 4. In this article, quadratic forms 
appearing in the classical moment problem are replaced by quadratic vector-valued mappings.  
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The rest of this paper is organized as follows. Section 2 is devoted to polynomial approximation on unbounded subsets. In Section 
3, a few aspects of the Markov moment problem are pointed out. In Section 4, invariance of the unit ball in ��- type spaces with 
respect to some bounded linear operators is discussed.  
 
2. POLYNOMIAL APPROXIMATION ON UNBOUNDED SUBSETS 
 
The main results of this section were stated and proved in (Mihăilă et al., 2007; Olteanu and Olteanu, 2007; Olteanu, 2014; 
Olteanu, 2015) and recalled in two other review papers. In these latter works, the poofs are not presented any more. Here we give 
the proofs for the multidimensional case, which is the most interesting for the purpose of the present work.These results will be 
applied in the sequel (see subsection 3.2 below). 
 

Lemma 2.1. Let  R),0[: be a continuous function, such that 


Rt
t

)(lim   exists. Then there is a decreasing sequence 

llh )(  in the linear hull of the functions 

0,N),(exp)(  tkkttk , 

 
Such that ℎ�(�) > �(�), 0t , Nl , ���ℎ� = � uniformly on ),0[  . There exists a sequence of polynomial functions 

(���)�∈ℕ,,��� ≥ ℎ� > �, ��� ��� = �, uniformly on compact subsets of ),0[  . 

 
The idea of the proof is to add the  point and to apply the Stone-Weierstrass Theorem to the subalgebra generated by the 

functions )(exp mt , Zm . Then one uses for each such exp – function suitable majorizing or minorizing polynomial - sums, 

as well as the obvious equality  
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Lemma 2.2. Let   be a M-determinate positive regular measure on ),0[  , with finite moments of all natural orders. If 

llp )~(,  are as in Lemma 2.1, then there exists a subsequence mlmp )~( , such that mlp~  in )),0([1 L  and uniformly on 

compact subsets. In particular, it follows that the positive cone P  of positive polynomials is dense in the positive cone 

))),0([1( L  of )),0([1 L  
 
Lemma 2.3. For any simple function of the form 
 

NjRjINjjjIj

N

j

s ,,1,,,,1,0,

1

 



   , 

�� being intervals, there exists a sequence of polynomials mmp )( , smp   in )),0([1 L , smp  , m , where   is a M-

determinate positive regular Borel measure with finite moments of all natural orders. If s is extended to an even function over R, 

then the polynomials Nmpm ,  are restrictions to the positive semi axis of even polynomials on R. 

 
We recall that a � −determinate measure is, by definition, uniquely determinate by its moments, or, equivalently, by its values on 
polynomials. 
 
The novelty of Lemma 2.2 consists in the approximation from above, which implies the positivity of the approximating 
polynomials. For positive regular Borel measures, Luzin’s theorem and approximation by continuous compactly supported 
functions do work. If we additionally assume that such a measure is M-determinate, then polynomial approximation proved in 
lemma 2.4 from below holds too. One can give a proof of Lemma 2.2, which is different from that of lemma 2.4 (see (Mihăilă et 
al., 2007; Olteanu and Olteanu, 2007, 2009)).  
 
Lemma 2.4 is important in itself, due to its generality. The proof is based on a Hahn-Banach argument, also using elements of 
measure theory. Now let us recall some notations. If A is a locally compact topological space (for example an unbounded closed 

subset of 
nR ) then )(0 AC  is the space of all continuous real functions on A, vanishing at infinity. By )(AcC  one denotes the 

space of all real continuous compactly supported functions on A, having their supports contained in A. If Y is an ordered vector 

space, then Y  denotes the positive cone of Y. The next polynomial approximation result on an unbounded (closed) subset will be 

applied in the sequel. 
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Lemma 2.4. Let 
nRA  be an unbounded closed subset, and   an M-determinate positive regular Borel measure on A, with 

finite moments of all natural orders. Then for any  ))(0( ACx , there exists a sequence mmp )( , Pmp , xmp  , xmp   

in )(1 AL . In particular, we have: 

 dtx
A

dtmp
A

)()(lim   , 

 

P is dense in ���
� (�)�

�
, and P is dense in ��

� (�). 

 

Proof.Let consider the sublattice )(1 ALX   of all function   such that ||  is dominated by some polynomial p on A. To prove 

the assertions of the statement, it is sufficient to show that for any  ))(0( ACx , we have 

 dtx
A

Ppxpdtp
A

xQ )(,;)(inf:)(1  












 . 

 
Obviously, one has 

     

��(�) ≥ � �(�)
�

��                                                                                                                                       (2.1) 

 
To prove the converse, we define the linear form 
 

RaPpxQadtp
A

axpFRxSpPXF   ,),(1)(:)(0,}{0:0  . 

 

Next we show that 0F  is positive on 0X . In fact, for 0a , one has (from the definition of 1Q , which is a sublinear functional 

on X) 

0)(0)()(1)(1)(0   axpFdtp
A

axQxQaaxpaxp  . 

 
If � ≥ 0, we infer that 
 

.0)(0)(1)(1)(

)(1)(1))((1)0(10





 axpFxaQaxQ
A

dtp

axQxaQaxaxQQ


 

 

Whence, in both possible cases, 0)0(0)0(0  xFXx . Since 0X  contains the space of polynomials functions, which is a 

majorizing subspace of X, there exists a linear positive extension RXF :  of 0F (cf. Theorem 3.1.5 below), that is continuous 

on )(0 AC , with respect to the sup-norm. Therefore, F has a representation by means of a positive Borel regular measure   on A, 

such that 
 

)(0,)()( ACxdtx
A

xF    . 

 

Let Pp  be a nonnegative polynomial function. There is a nondecreasing sequence mmx )(  of continuous nonnegative 

function with compact support, such that pmx  , point wise on A. Positivity of F and Lebesgue dominated convergence theorem 

for   yield 

  Pppd
A

dtmx
A

mxFpFpd
A

,)(sup)(sup)(  . 

 

Thanks to Haviland theorem, there exists a positive Borel regular measure   on A, such that 
 

Pppppppp  ),()()()()()(  . 

 
Since   is assumed to be M-determinate, it follows that 
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)()()( BBB   , 

for any Borel subset B of A. From this last assertion, approximating each  ))(1( ALx   by a nondecreasing sequence of 

nonnegative simple functions, and also using Lebesgue convergence theorem, one obtains firstly for positive functions, then for 
arbitrary  -integrable functions x:  

)(1, ALxdx
A

dx
A

dx
A

   . 

 
In particular, we must have 
 

� ��� ≥ �(�) = ��
�

(�) = ��(�)                                                                                                    (2.2) 

 
Now (2.1) and (2.2) conclude the proof.□ 
      
Note the polynomials appearing in the preceding lemma 2.4 are nonnegative on A. However, this does not solve our problem, 
because the form of positive (or nonnegative) polynomials on an arbitrary unbounded closed subset � is not known. Therefore, the 
connection to the polynomials of one variable would be convenient. The next result makes the connection of nonnegative 
compactly supported functions of several variables with the sums of products of squares of some other polynomials, in one-
dimensional variable. Precisely, the following result holds. 
 

Lemma 2.5. Let n  21  be a product of n� − determinate positive regular Borel measures on R, with finite 

moments of all natural orders. Then we can approximate any nonnegative continuous compactly supported function in 

)(1: nRLX   by means of sums of tensor products nppp  21 , jp  positive polynomial on the real line, in variable jt , 

nj ,,1  . 

Proof. If K is the support of a continuous compactly supported nonnegative function ),( n
c RCf   then  

 

.,,1),(,21 njKjprjKnKKKK    

 

Consider a parallelepiped 
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containing the above Cartesian product of compacts and apply approximation of f on nS  by the corresponding Bernstein 

polynomials in nv ariables. Namely, the explicit form of the Bernstein polynomials is  
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Each term of such a polynomial is a tensor product nppp  21 , of positive polynomials in each variable, on the 

projection )( nSjpr , nj ,,1  . Extend each jp  such that it vanishes outside )( nSjpr , applying then Luzin’s theorem, 

nj ,,1 . This procedure does not change the values of jp on jK . One obtains approximation by sums of tensor products of 

positive continuous functions with compact support, in each variable jt , nj ,,1  . The approximating process holds in 1L  

norm, and uniformly on K. Now application of lemma 2.4 to 1n , RA  , leads to approximation of each such function in each 

separate variable by a dominating (positive) polynomial, in the space )(1 R
j

L


, nj ,,1 . The conclusion follows.□ 

3. ON MARKOV MOMENT PROBLEM 
 

3.1. Introduction and general extension results 
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As we have already seen in the Introduction (Section 1), Markov moment problem is an extension type problem for linear 
functionals or operators, with two constraints. The present chapter represents a part of Chapter I from [9] (see also the references 
therein). It focuses on characterizing or finding sufficient conditions for the existence of a solution of a Markov moment problem. 
Sometimes the uniqueness of the solution follows too. To this aim, generalizations of Hahn – Banach type results, polynomial 
approximation on some special closed unbounded subsets, Krein – Milman theorem and related results are applied. The main 
related extension results can be found in (Olteanu, 1978, 1983, 1991, 1996). We recall the classical formulation of the moment 
problem, under the terms of T. Stieltjes, given in 1894-1895 (see the basic book of N.I. Akhiezer for details): find the repartition 

of the positive mass on the nonnegative semi-axis, if the moments of arbitrary orders k ( ,2,1,0k ) are given. Precisely, in the 

Stieltjes moment problem, a sequence of real numbers 0)( kks  is given and one looks for a nondecreasing real function )(t
  

( 0t ), which verifies the moment conditions: 
 





0

),2,1,0( kksdkt  . 

 
This is a one dimensional moment problem, on an unbounded interval. Namely, is an interpolation problem with the constraint on 
the positivity of the measure dσ. The existence, the uniqueness and the construction of the solution   are studied. The present 
chapter concerns firstly the existence problem. If the interval is replaced by a subset of ℝ�, we have a multidimensional moment 
problem. The connection with the positive polynomials and extensions of linear positive functional and operators is quite clear. It 
was studied by many authors appearing in the references of the papers and books listed in References (see Section 1). If the 
sequence of the real numbers - moments is replaced by a sequence of operators, we have an operator-valued moment problem. 
Most of the problems appearing in applications require not only the existence of a positive solution, but also an upper constraint on 
the solution. This is the Markov moment problem. The upper constraint on the solution controls its norm, while the lower 
constraint is usually the positivity of the solution. Many of these solutions are unique (we have M-determinate Markov moment 
problems). One of the most useful earlier results is Lemma of the majorizing subspace (see below). The main problem was to find 
necessary and sufficient conditions for the existence of a solution of the interpolation problem, preserving sandwich conditions. In 
this general case, the operators involved in the (convex and respectively concave) constraints are defined on arbitrary convex 
subsets. Here we recall an answer published firstly in 1991, without losing convexity, but strongly generalizing the classical result. 
This answer is based on previous results published in (Olteanu, 1978, 1983) (see below). Parts of these generalizations of the 
Hahn-Banach principle are involved in the present work too. Throughout this first part, X will be a real vector space, Y an order-

complete vector lattice, XBA ,  convex subsets, �: � → � a concave operator, �: � → � a convex operator, � ⊂ � a vector 

subspace, �: � → �a linear operator. 
 
Theorem 3.1.1. Assume that: 
 

BSTBSfASWASf  ||,||  . 

 
The following assertions are equivalent: 
 
(a) there exists a linear extension YXF :  of the operator f such that �|� ≥ �, �|� ≤ �; 

(b) there exists YAT :1  convex and YBW :1  concave operator such that for all 

SBAvbbaat  22),0(2]1,0[),',1,',1,',,(  , 

one has 
 

  .)]'()'()1[(')()1(111)1(
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
 

 
Thus in the last relation, we have a convex operator in the left hand side, and a concave operator in the right hand side. The 
following result related to the theorem of H. Bauer follows. 
 

Theorem 3.1.2.  Let X be a preordered vector space with its positive cone X , Y an order complete vector lattice, YXT :  a 

convex operator, XS   a vector subspace, YSf :  a linear positive operator. The following assertions are equivalent: 

 

(a) there exists a linear positive extension YXF : off such that )()( xTxF  , Xx ; 

(b) )()( xTsf 
 
for all XSxs ),(  such that xs  . 

 

Now we can deduce the main results on the abstract moment problem. 
 

Theorem 3.1.3. Let YXTYX :,,  be as in Theorem 3.1.2, XJjjx }{ , YJjjy }{  given families. The following 

assertions are equivalent: 
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(a) There exists a linear positive operator YXF :  such that 

XxxTxFJjjyjxF  )()(,)( ; 

(b) For any finite subset JJ 0  and any RJjj   0
}{ , we have: 
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
   

 
A clearer sandwich-moment problem variant is the following one.  
 

Theorem 3.1.4. Let JjjyJjjxYX  }{,}{,,  be as in Theorem 1.3 and ),(2,1 YXLFF   two linear operators. The following 

statements are equivalent: 
 

(a) There exists a linear operator ),( YXLF   such that 

 

JjjyjxFXxxFxFxF  ,)(,),(2)()(1 ; 

 

(b) For any finite subset JJ 0  and any RJjj  0}{ , we have: 
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The last result of this subsection is an earlier extension result, called Lemma of the majorizing subspace, for positive linear 
operators on subspaces in ordered vector spaces (X, X�), for which the positive cone X� is generating (X = X� − X�). Recall that 
in a such an ordered vector space X, a vector subspace S is called a majorizing subspace if for any x ∈ X, there exists s ∈ S such 
that x ≤ s. 
 
Theorem 3.1.5.Let � be an ordered vector space whose positive cone is generating, � ⊂ � a majorizing vector subspace, � an 
order complete vector lattice, ��: � → � a linear positive operator. Then �� has a linear positive extension �: � → � at least. 
 
Some of the results of this chapter are applications of the theorems stated above. Most of our proofs involve inequalities. The 
results stated below have been published in previous articles or books, recently recalled in (Lemnete-Ninulescu and Olteanu, 
2017). The latter book concerns also the connection of the moment problem with operator theory and the complex moment 
problem. The reader who is interested in connections of the moment problem with operator theory can study the works (Fuglede, 
1983; Lemnete-Ninulescu, 2017; Putinar, 1993; Schmüdgen, 2017; Vasilescu, 2003). 
 
3.2. Polynomial approximation and Markov moment problem 

In the sequel, one applies the results of Sections 2 and 3.1 in order to prove the existence and uniqueness theorems for the 
solutions of some Markov moment problems on Cartesian products of unbounded intervals (the multidimensional case). The one 
dimensional case follows as a consequence. 
 

Let ,21 n   where j , nj ,,1  are positive Borel regular M-determinate measures on R, with finite moments 

of all natural orders. Let 
 

nRnttn
njjjnj

nt
j

tnttj  ),,1(,N),,1(,1
1),,1(  . 

 

Let )(1 nRLX  , Y be an order complete Banach lattice, and njjy
N

)(


 a multi-indexed sequence in Y.  

Theorem 3.2.1. Let YXF :2  be a positive linear bounded operator. The following statements are equivalent: 
 

(a) there exists a unique bounded linear operator YXF : , such that 

njjyjF N,)(  , 

 

F is between zero and 2F  on the positive cone of X, ||2|||||| FF  ; 
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(b) for any finite subset nJ N0  , and any R};{ 0  Jjj , we have  
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nkRkJkjkj ,,1,}{  , 

one has 
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Proof. We define 0F  on the space of polynomials, such that the moment (interpolation) conditions are accomplished. Conditions 

(b) say that 0F  is positive on the convex cone of all point wise nonnegative polynomials on
nR  and is dominated by 2F  on the 

convex cone generated by the tensor products of positive polynomials in each separate variable appearing in lemma 2.5. Such 
polynomials are sums of squares of some other polynomials with real coefficients. Hence, the implication (a)   (b) is obvious. 

For the converse, let   be a nonnegative continuous compactly supported function defined on 
nR . By the preceding Lemma 2.5, 

one approximates   on a hyper parallelepiped nS  containing  

 
)(support)(support1  nprpr 

 
 

by means of the corresponding Bernstein polynomials in n variables, on nS  (Lemma 2.5). Then one approximates   by sums of 

tensor products of positive polynomials on R: 
 




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,,,,1,

)(

0

 , 

in the space ).(1 nRL  On the other hand, the linear positive operator 0F  has a linear positive extension F defined on the space of 

all integrable functions with their absolute value dominated on 
nR  by a polynomial (cf. Theorem 3.1.5). This space contains the 

space of continuous compactly supported functions. Whence, for any linear positive functional ℎ on �, Fh  can be represented 
by a regular positive Radon measure. Moreover, using (b) and applying Fatou’s lemma, one obtains: 
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 (3.2.1) 

 
Assume that 
 

 YFF )()(2   . 

 

Using a separation theorem, it should exist a positive linear continuous functional 
*
Yh  such that 

 

0))()(2(   FFh , 

 
that is ))(()(2(  FhFh  . This relation contradicts (3.2.1). The conclusion is that we must have 

8881                  Asian Journal of Science and Technology, Vol. 09, Issue, 10, pp.8875-8890, October, 2018 
 



 ))((),(2)( nRcCFF   . 

 

Then for an arbitrary compactly supported continuous function )( n
c RCg   one writes 

1||||||2||||)(|||)(|2)(2)(2|)(| gFgFgFgFgFgF   . 

 

Consequently, the operator F is positive and continuous, of norm dominated by ||2|| F , on a dense subspace of ).(1 nRL It has a 

unique linear extension preserving these properties.□  
        

Let )),0[),0([1  LX , n  1 , nll ,,1,   being positive � −determinate measures on [0, ∞). Repeating 

the proof of Theorem 3.2.1, and using the form of positive polynomials on R  [1] in terms of sums of squares:

),,1,0),(2
2,

)(2
1,

)(( nlltltl
pltltl

pltlp  , one obtains a similar statement for this case. Under the same assumptions on 

Y, and using the same hypothesis and notations, one obtains the following result. 
 

Theorem 3.2.2. Let njjy
N

)(


 be a sequence in Y. The following statements are equivalent 

(a) there exists a unique (bounded) linear operator ),( YXBF  such that jyjF )( , nj N , F is between zero and 2F  on 

the positive cone of X, ||2|||||| FF  ; 

(b)  for any finite subset nJ N0   and any R}0;{ Jjj , we have 
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 ; 

 

for any finite subsets NkJ , nk ,,1  and any RkJkjkj }{ , nk ,,1 , one has 
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Corollary 3.2.1. Let � be a positive � − determinate regular Borel measure on ℝ (with finite moments of all orders), ��(�) =

��, � ∈ ℝ, � ∈ ℕ, �: = ��
� (ℝ), � an order complete Banach lattice, ����

�∈ℕ
 a sequence of given elements in �, �� a given bounded 

positive linear operator applying � into �. The following statements are equivalent: 
 
(a) there exists a unique bounded linear operator from � into � such that the interpolation conditions 
 

����� = ��, � ∈ ℕ 

 
are accomplished, � is between zero and �� on the positive cone of �, ‖�‖ ≤ ‖��‖; 
 

(b) for any finite subset �� ⊂ ℕ and any ����
�∈��

⊂ ℝ, one has  

0 ≤ � λ�λ�

�,�∈��

y��� ≤ � λ�λ�

�,�∈��

F��φ���� 

 
Proof. The implication (a) ⇒ (b)is obvious, due to the properties of F, also observing that  
 

� λ�λ�

�,�∈��

y��� = F � � λ�λ�

�,�∈��

φ���� = F ��� λ�φ�

�∈��

�

�

� ∈ Y�. 
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� λ�λ�

�,�∈��

y��� = F ��� λ�φ�
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� ≤ F� ��� λ�φ�

�∈��

�

�

� = � λ�λ�
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F��φ���� 

 
The converse implication is a consequence of Theorem 3.2.1, also using the fact that any positive polynomial (with real 
coefficients) on the whole real line is a sum of (two) squares of polynomials. Thus, the first implication (b) from Theorem 3.2.1 is 
equivalent to the first inequality (b) of the present corollary. This concludes the proof.□ 
 
Using a similar remark to that of Corollary 3.2.1, from Theorem 3.2.2 one deduces the following result. 
 
Corollary 3.2.2. Under the same hypotheses and using the same notations, where one replaces ℝ by ℝ�, �: = ��

� (ℝ�), the 
following statements are equivalent: 
 
(a) There exists a unique bounded linear operator from � into � such that the interpolation conditions 
 

����� = ��, � ∈ ℕ 

 
are accomplished, � is between zero and �� on the positive cone of �, ‖�‖ ≤ ‖��‖; 
 

(b) For any finite subset �� ⊂ ℕ and any ����
�∈��

⊂ ℝ, one has  

0 ≤ � λ�λ�

�,�∈��

y����� ≤ � λ�λ�

�,�∈��

F��φ������, l ∈ {0,1} 

 
In the end of this section, one recalls a well-known important example which might stand for the space � in the previous results. 
Let � be an arbitrary complex Hilbert space, � ∈ � a linear (bounded) self-adjoint operator acting on �, (where � is the real 
vector space of all self-adjoint operators acting on �). Denote  
 

�� ≔ {� ∈ �; �� = ��}, � = �(�) ≔ {� ∈ ��; �� = ��, ∀� ∈ ��}                                                (3.2.2) 
 
Obviously, �defined by (3.2.2) is a commutative real operator algebra. It is also an order complete Banach lattice, endowed with 
the usual order relation: � ≤ � ⇔ < �ℎ, ℎ > ≤ < �ℎ, ℎ >, ∀ℎ ∈ �, �, � ∈ �, and operatorial norm (cf. [5], pp. 303-305).  
 
3.3. Extreme points, Markov moment problem and a related inverse problem 

The aim of this Section is to recall some ideas from (Olteanu, 2013; Lemnete-Ninulescu and Olteanu, 2017) (see also the 
references therein). One solves truncated moment problems and one points out their connection to the full moment problem. Let us 
denote 
 

 0\N],,0[,1)(  jbtjtjtj . 

 

Theorem 3.3.1. For a given family of numbers
n
jjm 1)(  , consider the following statements: 

(a) there exists ]),0([ bLh   such that  

;,,2,1,)(1

0
.,.1)(0 njdtthjt

b
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(b) for any family of scalars 
n
jj 1

)(


 ,one has 

jbj

n
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n
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 
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 11

 ; 

 

(c) there exists a Borel subset � such that 

njjmdt
j

tj
B

,,1,
1




 . 

 

Then (b) ⇒ (a) ⇔ (c). 
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Proof. Let the point (b) be accomplished and assume that 
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Then integration on ],0[ b  yields 
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Application of Theorem 3.1.4 to 01 F , 2F  defined above, leads to the existence of a linear positive form F on ]),0([1 bL  such 

that 
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Thus, (�) ⇒ (�) is proved. (if the characteristic functions of Borel subsets stand for  , then the conclusion (a) follows by 

measure theory arguments). The implication (a)   (c) is a consequence of equality (15.14) [7] (see also Exercise 2.57 [7]). The 

set of values for the control function u, namely ]1,1[  is replaced by ]1,0[ , the set of values for h, which stands for the control 

function u. The extreme points of the positive part of the unit ball of ]),0([ bL are the characteristic functions of measurable 

sets. The converse is obvious.□ 
          
Corollary 3.3.1.Under the equivalent conditions (a), (c) of Theorem 3.3.1, there exist sequences 

N,,,,2,2,1,1  nnlxnlynxnynxny  , 

such that the following relations hold 
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Proof. One uses the fact that any Borel subset is of the form G \ N, where G is a G  set and N is a null set (a set of measure 

zero).□ 
 

Remark 3.3.1. To approximate the numbers 
k

njyk
njx ,,, , one can make use of Fourier approximate expansion of h with respect to 

the orthonormal sequence attached to the functions 1ktk  via Gram-Schmidt algorithm, also using the values of the moments 

km . Thus one obtains a smooth approximation h
~

 of h, and the intervals of ends nlxnly ,,,  are connected components of the 

open sets approximating from above subsets of the following form, in the sense of the measures of these sets: 
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Remark 3.3.2. A similar result to that of Theorem 3.3.1 in several dimensions holds, with the same proof. We state it for the two-
dimensional case. 
 
Theorem 3.3.2. Let  

221
111)2,1(
nj
njjjm

  be a given family of real numbers, and consider the functions 
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Consider the following statements: 
 

(a) there exists a Borel function h, 1)2,1(0  tth , such that 

 

8884                  Asian Journal of Science and Technology, Vol. 09, Issue, 10, pp.8875-8890, October, 2018 
 



221,111,)2,1(21)2,1)()2,1((
2

njnjjjmdtdttthjj
K

   ; 
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(c) there exists a Borel subsets 22 KB   such that 
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Then (b) ⇒(a) ⇔ (c) 
 
Corollary 3.3.2.If one of the conditions (a), (c) from Theorem 3.3.2 is accomplished, then there exist sequences 
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Proof. The Borel subset 2B  is the joint of a G  set and a null set. For an open subset 2BDn  , we consider its decomposition 

into cells used in the construction of Lebesgue measure. If we determine smooth approximations h
~

 of h by means of Gram 

Schmidt algorithm for the functions )2,1( jj  and the given moments )2,1( jjm  via Fourier expansion, then the sequences from 

the present corollary can be determined by means of cell-decomposition of the open subsets which approximate (in measure) the 
subsets 
 

.
)(2

1)(
)2,1(

~

)(2

)(
);2,1(











 


np

lm
tth

np

lm
tt

 
 
Of course, this way one obtains approximations of these numbers. □ 
    
The above statements solve the truncated moment problems and sketch an algorithm for determining numbers

nlunlvnlxnly ,,,,,,, . The next idea is to solve a full moment problem, by means of passing through the limit, based on a weak 

compactness argument. The following theorem proposes such a construction, thanks to Krein - Milman theorem. We state it firstly 
in the one dimensional case, although the several dimensional case follows using similar arguments. 
 
Theorem 3.3.3. With the notations from Theorem 3.3.1, let 1)( kkm  be a sequence of real numbers. Consider the following 

statements: 
 
(a) there exists a Borel function h such that 
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(c) for any }0{\Nn , there exists a Borel subset nB  such that 
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(d) for any natural 1n  and any R},,{ 1 n   the following relation holds true: 
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Then(d)   (a)  (b)   (c). 
 
Proof. (a)  (b). One applies Krein - Milman Theorem for the weakly compact subset formed by intersecting the unit ball of 

]),0([ bL  with the positive cone of the same space. Then we must have: 
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are suitable chosen open subsets, where the limit is in the weak topology on L , with respect to the dual pair ),( 1 LL ; m is the 

Lebesgue measure. This leads to: 
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Since each open subset jD  has an at most countable decomposition 

),,,( ljxljy
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the conclusion (b) follows. For the converse implication, observe that each step function 

njljxljy

l

jD

n

j
jDjnh ,,1),,,,(,

1

:  



    

is an element of the positive part of the unit ball in 
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by Lebesgue dominated convergence theorem. Hence (b)  (a) is proved. The implication (a)   (c) follows from (a)   (c) of 
Theorem 3.3.1, since a solution of the full moment problem is a solution of all truncated moment problems. It remains to prove 
that (d)   (a). This is a consequence of the implication (b)   (a) of Theorem 3.1.4. If }0{\N0 J  is a finite subset and 

RJjj  }0;{ ,then the following implications hold true: 
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Application of Theorem 3.1.4 leads to the existence of a linear functional Fon ]),([1 baL ,verifying 
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]).,([1,)(0

,N,1,1

baLdt
b

a
F

kkkmkktF








 

 

 

Now the conclusion follows by measure theory.□ 
      
Remark3.3.3.For the full moment problem, the following algorithm holds in determining (approximating) ljxljy ,,, . 

 
Step 1. (Approximating the function h). 
 

Let 1)( nne  be a Hilbert base constructed by the aid of Gram-Schmidt procedure, applied to the system of linearly independent 

functions 

}0{\N,1)(  nntntn . 

 
Then for each fixed natural number 1n , one has: 

jm
n
ja

n

j

jh
n
ja

n

j

nehj
n
ja

n

j

ne
)(

1

,
)(

1

,
)(

1











  , 

 

where the coefficients 
)(n

ja  are known form the Gram-Schmidt procedure. Hence we can determine each Fourier coefficient of h, 

that is we can approximate h in 
2L -norm by a sequence of polynomial functions nh , 1n . Then there exists a subsequence 

hnkh  pointwise almost everywhere in ],[ ba . 

 
Step 2. For each }0{\Nn , the subsets 

,N,,
2

1
)(

2
; 







 

 lp
l

nkp
l mp

m
th

m
t

 
 
can be approximated (in measure) by open subsets. The connected components of these open sets have as end points 
approximations of the unknowns ljxljy ,,, . Using a weakly compactness standard argument, we can obtain h as the limit of a 

subsequences of )(
nB , where nB  are as in assertion (c) of Theorem 3.3.3. Considering a suitable open set nkBnkD  , from 

(a) one obtains: 
 

[
,

,
,

]),
,,

(1
ln

x
ln

y

l
nkDk

ln
yk

ln
x

l

dtktk

nkD
km    . 

 
This concludes the last remark.      
Note that all results of this section can be adapted to the multidimensional moment problem, with similar proofs. 
 

4. ON THE INVARIANCE OF THE UNIT BALL IN �� SPACES 
 

This section is exclusively based on the last part of [18]. Let Y be an order complete Banach lattice. Let )(1 ALX  , where ,A  

are as in Lemma 2..4,P being the subspace of polynomials on A. Define the set 

}1||||,0)();,({
1

 TXTYXBTS  . 

 

Theorem 4.1.For a linear operator YPV : , the following statements are equivalent 

(a) V has a linear positive extension  1
~

SV ; 

(b) There exists 
1

ST  such that  PppTpV ),()(0  . 

 

Proof. The implication (a)   (b) is obvious: put  1
~

: SVT . Then one has 

   PppVpVpTpVpV ,0)(
~

),()(
~

)( . 
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To prove the converse, consider a linear positive extension V  to V, to the subspace of X formed by all functions dominated on A, 
in absolute value, by a polynomial. The latter space contains both the subspace of polynomials and the subspace of continuous 

compactly supported functions. The existence of such an extension follows from Theorem 3.1.5 stated above. Let mp, , Nm  

be as in Lemma2.4, where   is continuous and compactly supported. Assume by reduction to absurd that 

 YVT )()(   . 

 

Since the positive cone Y  is closed and convex, a separation Hahn-Banach result implies the existence of a linear positive 

functional y  on Y such that 

 

0))()((*   VTy , 

 
that is 
 

))((*))((*  VyTy  . 

 

On the other hand, since all the polynomials mp  are majorizing the nonnegative function  , using Fatou’s lemma for the linear 

positive functional Vy * , which can be represented by a positive measure, the following relations hold true 

 

)).((*))(*(lim                                                    

))(*(inflim))(*(inflim))(*(inflim))((*





TympTy
m

mpTympVympVyVy








 

 
Hence we have been leaded to the contradiction 
 

))((*))((*  TyTy   . 

 
The conclusion is 
 

 YVT )()(   , 

 
that is. )()(  TV  for all nonnegative continuous compactly supported functions  . Now let   an arbitrary continuous 

compactly supported function. Then by the preceding relations, the following inequalities hold too 
 

|)(||)(||)(|  TVV  . 

 
Since the norm on the Banach lattice Y is solid, we infer that 
 

1||||1||||||||||)(||   TV  . 

 

Hence V is linear, positive, continuous and of norm at most one on the dense subspace of X formed by the continuous compactly 

supported functions. By a standard density argument, it has a unique linear extension V
~

 to the whole space X, of norm at most 

one. This bounded extension is also positive on X  due to the density of positive polynomials in X  (Lemma 2.4). This 

concludes the proof.□ 
 
Denote 

},1),1();({:)(
1 XBXBTXBTXS  , 

 

where X is as above, and XB ,1  is the closed unit ball in X. Let XPV :  be a linear operator. 

 
Corollary 4.1. The following statements are equivalent 

(a) Vhas a linear positive extension )(
1

~
XSV  ; 

(b) there exists )(
1

XST   such that )()(0 pTpV  ,  Pp  . 

Proof.  Put in Theorem 4.1 )(1 ALXY  . Then X is an order complete vector lattice (in which any order convergent sequence is 

convergent in the norm topology). To prove (b)   (a), one applies the corresponding implication from theorem 4.1. Observe also 

that 1||
~

|| V  if and only if XBXBV ,1),1(  .□  
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The next goal is to give some characterizations in terms of quadratic forms (when this fact is allowed by the form of positive 
polynomials in terms of sums of squares). 
 

Corollary 4.2. Let )R(1
LX  , where   is a positive regular M-determinate measure on R (with finite moments of all orders), 

jttjx )( , Rt , Nj . Let XPV :  be a linear operator. The following statements are equivalent 

(a) V has a linear positive extension )(
1

~
XSV  ; 

(b) there exists )(
1

XST   such that for any finite subset R0}{ Jjj , the following relations hold 
 

)(

0,

)(

0,

0 jixTji

Jji

jixVji

Jji









   . 

 

Proof. One applies Corollary 4.1 to )R(1
LX  , when in Theorem 4.1 one takes 1n , RA , also using the form of positive 

polynomials on the real line, as being sums of squares of some polynomials with real coefficients.□ 
 

Corollary 4.3. Let )),0([1  LX ,   being a positive regular M- determinate Borel measure on R , with finite moments of all 

orders. Let 
jttjx )( , Rt , Nj  . Let XPV :  be a linear operator. The following statements are equivalent 

 

(a) V has a linear positive extension )(
1

~
XSV  ; 

(b) there exists )(
1

XST   such that for any finite subset R0}{ Jjj , the following relations hold 

}1,0{),(

0,

)(

0,

0 







  lljixTji

Jji

ljixVji

Jji

 . 

 
Proof. The proof is similar to that of Corollary 4.2, also using the form of positive polynomials on .R □

 

 
As it is well known, in several dimensions, there are positive polynomials which are not sums of squares cf. [2]. However, using 
approximation results (Lemma 2.5), the connection with tensor products of positive polynomials in each separate variable holds 
true. Let X ≔ L�

� (ℝ�) where ν is as in Lemma 2.5, 
 

n
nttn

njjjnj
nt

j
tnttjx R),,1(,N),,1(,1
1

),,1(    . 

 
Let XP :V  be a linear operator, where P is the subspace of polynomials in n real variables, with real coefficients. 
 
Theorem 4.2. The following statements are equivalent 
 

(a) V has a linear positive extension )(
1

~
XSV  ; 

(b)  PppV ,)(0 and there exists )(
1

XST   such that for any finite subset nkNkJ ,,1,   and any  

nkkJkjkj ,,1,R}{  , 

one has 
 

.),,11(11
,11,1

),,11(11
,11,1
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

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
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





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


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





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


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
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


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


































njnijixTnjniji

nJnjniJji

njnijixVnjniji

nJnjniJji





. 

Corollary 4.4. Let )R(1 nLX   and Y be a Banach lattice. Assume that T is a linear bounded operator fromX into Y. The 

following statements are equivalent 
 
(a) T is a positive linear operator from X into Y; 
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(b) for any finite subsets NkJ , nk ,,1  and any 

,,,1,R}{ nkkJkjkj   

the following relation holds 





































   ),,11(11
,11,1

0 njnijixTnjniji

nJnjniJji

  . 

 
Proof. Notice that (b) says that T is positive on the convex cone generated by special positive polynomials mentioned in lemma 2. 
Consequently, (a)   (b) is obvious. In order to prove the converse, observe that any nonnegative element of X can be 
approximated by nonnegative continuous compactly supported functions. Such functions can be approximated by sums of tensor 
products of positive polynomials in each separate variable (Lemma 2.5). The conclusion is that any nonnegative function from X 

can be approximated in )R(1 nLX   by sums of tensor products of squares of polynomials in each separate variable. But on 

such special polynomials, T admits nonnegative values, following the condition (b). Now the desired conclusion is a consequence 
of the continuity of T. This concludes the proof. □ 
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