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 ARTICLE INFO    ABSTRACT 
 

 

Con-s-normal matrices play the same role in the theory of s-unitary congruences as 
conventional s-normal matrices do with respect to s-unitary similarities. Naturally, the 
properties of both matrix classes are fairly similar up to the distinction between the 
congruence and similarity. However, in certain respects, con-s-normal matrices differ 
substantially from s-normal ones. Our goal in this paper is to indicate one of such 
distinctions. It is shown that none of the familiar characterizations of s-normal matrices 
having the irreducible tridiagonal form has a natural counterpart in the case of con-s-normal 
matrices. 
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INTRODUCTION 

Let Cnxn be the space of nxn complex matrices of order n. For , n nA C  let TA , A , A*, SA , 
 
 
 

s

A A  and -1  A denote the 

transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose and inverse of matrix A 
respectively. The conjugate secondary transpose of A satisfies the following properties such as 
 

     , ,    A A A B A B AB B A
      

. Etc 

 

Definition 1 

 A matrix  n nA C  is said to be normal if 
* * .AA A A  

Definition 2 

 A Matrix  n nA C  is said to be conjugate normal (con-normal) if  
* * .AA A A   

Definition 3  

 A matrix   n nA C   is said to be secondary normal (s-normal) if .AA A A 
   

Definition 4 

 A matrix   n nA C  is said to be unitary if  
* * . AA A A I  

Definition 5 

 A matrix  n nA C  is said to be s-unitary if . AA A A I 
  

Definition 6 [5] 

A matrix  n nA C  is said to be a conjugate secondary normal matrix (con-s-normal) if AA A A 
 where 

S
A A

. 

                                                                                                    . . . (1) 
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This matrix class plays the same role in the theory of s-unitary congruences as conventional normal matrices do with respect to s-
unitary similarities.  Accordingly, the properties of both matrix classes are fairly similar up to the distinction between congruence 
and similarity. However, in certain respects, con-s-normal matrices substantially differ froms-normal ones. Our goal in this paper 
is to indicate one of such distinctions that concerns matrices having a tridiagonal form. 
A tridiagonal matrix 
 

1 2

2 2 3

3 3

1n n

n n

...
A

... ... ... ... ... ...

 

  

 

 

 


 
 
 
 

  
 
 
  
 

                                                                                      . . . (2) 

 
is said to be irreducible if 
 

2 3 0n...                                                                                             . . . (3) 

 
and 

2 3 0n... .      

                                                                                                                      . . . (4) 
 
For a s-normal A, inequalities (3) and (4) are implications of each other; therefore, irreducibility can be characterized by any one 
of these inequalities. There exist several descriptions of s-normal matrices having the irreducible tridiagonal form. One of these 

descriptions is based on a well-known characteristic property of s-normal matrices; namely, a matrix   nA M C  is s-normal if 

and only if its s-Hermitian adjoint A
 is a polynomial in A. Moreover, in the representation A

= f (A),                          . . . (5)  
one can choose f to be a polynomial with a degree less than n. 
 

Proposition 1 
 

Irreducible matrix (2) is s-normal if and only if A
 is a linear polynomial in A. 

The following description is an easy corollary of Proposition 1. 
  

Proposition 2 
 
Irreducible matrix (2) is s-normal if and only if 
 

i
nA e H I ,                                                                                            . . . (6) 

Where  � �, ,  and H is a s-Hermitian matrix. In particular, if A is real, then A is either s-symmetric or has the for  

 

nA K I ,                                                                              . . . (7) 

 

Where  � and K is a s-skew symmetric matrix. 
One more description can be derived from representation (6). 
 

Proposition 3 
 
Irreducible matrix (2) is s-normal if and only if its secondary spectrum belongs to a line. 
 

Tridiagonal Con-s-Normal Matrices 
 
Here after, matrix (2) is assumed to be irreducible. Moreover, without loss of generality, we can assume β2,…, βn to be real 
positive scalars. Indeed, performing for matrix (2) the congruence transformation 

A A DAD   
 
with the diagonal s-unitary matrix 
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 21 2 3ji

n jD diag ,d ,...,d , d e , j , ,...,n,


    

we have 

12 2 2 1 1 1 2 3 1j , j j j ja d , a d d , j , ,...,n .         

Setting 

2 2 1 1 2 3 1j j jarg , arg , j , ,...,n ,             

 

we obtain a matrix A with positive entries in positions (1, 2), (2, 3), …, (n– 1,n). 
Denote by An–1 the leading principal submatrix that is obtained by deleting the last row and the last column in A. 
 
Lemma 1 
 
An–1 is a con-s-normal matrix. 
 

Proof 
 
Equating the last diagonal entries of the two matrices in relation (1), we see that  
 

n n .                                                                                            . . . (8) 

 

Equating the leading principal submatrices of order n– 1 in (1), we have 
 

22
1 1 1 1 1 1 1 1         s s

n n n n n n n n n nA A e e A A e e                                                                                        . . . (9) 

 
Here, en–1 is the last coordinate column vector in the space Cn–1. Equalities (8) and (9) prove the lemma. 
 
Corollary 1 
 
All the leading principal submatrices of a con-s-normal matrix A of form (2) are also con-s-normal. 
 

Remark 
 
A similar assertion is valid for trailing submatrices, that is, for submatrices counted off the right lower corner of A. Moreover, any 
principal submatrix lying at the intersection of successive rows and columns of matrix (2) is con-s-normal. 
Now, we equate in (1) the entries in the positions (n – 2, n) and (n – 1, n), which gives 
 

1 1n n n n ,    
 

                                                                                                                   . . . (10) 

1 1n n n n n n n n          
 

 

Or     1n n n n n n .                                                     . . . (11) 

 
Using Lemma 1 and its corollary recursively, we obtain the relations 
 

1 1 3 4j j j j , j , ,...,n,                                                                                           . . . (12) 

 

   1 2 3j j j j j j , j , ,...,n.                                                                               . . . (13) 

 
According to (12), a choice of β2,…,βn and γn uniquely determines γ2,…,γn – 1. Note that γn must obey condition (8). 
If γn = βn, then (12) implies the equalities 
 

2 3 1j j , j , ,...,n .   
 

 
In this case, A is a s-symmetric matrix and relations (13) impose no limitations on its diagonal entries α1,…,αn. 
If γn = –βn, then the equalities 
 

2 3 1j j , j , ,...,n ,                                                                                          . . . (14) 
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are derived from (12) and the equalities 
 

1 2 3j j , j , ,...,n,                                                                                          . . . (15) 

 
are derived from (13). Thus, the choice of αn determines the entire diagonal of A. Finally, assume that 
 

  0i
n ne , , , .                                                                                              . . . (16) 

 
 
Relations (12) yield 
 

1 21 2 33
i i

n nn n nn
ie , e , e ...     

                                                              . . . (17) 

 
Similarly to the preceding case, all the diagonal entries have the same modulus. Define ψ by the formula 

 1iarg e .                                                                                          . . . (18) 

Choosing αn, we find from (13) that 
 

1 2 3
2 2 4 6

1
i i i i

n n n nn nne , e e , e ,...          
 

                                                           . . . (19) 

 
For instance, if n = 3 and φ = π/2, we have 
 

 
3

1
4

arg i   
 

 

And  2 2 2 3 1 3i, i , .          
 

 

In the case described by relations (16)–(19), conjugate-s-normal matrices of form (2) cannot be reduced to s-symmetric or s-skew 
symmetric matrices. 
 

On The Multiplicity of Con-s-Eigen Values 
 
If irreducible matrix (2) is s-normal, then all of its s-eigen values are simple, which follows from the relation  

  1nrank A zI n z .    �
 

 

This consideration is inapplicable to con-s-normal matrices. For instance, the Jordan block Jn(0) with zero on the main diagonal 
has the rank n–1 and, at the same time, ans-eigen value of multiplicity n. In general, con-s-normal matrices are not s-normal. 
Moreover, the con-s-eigen values rather than s-eigen values are invariants of s-unitary congruences. We recall their definition as 
given in (George et al., 1995). 
 

With a matrix   nA M C , we associate the matrices 

 

LA AA                                                                                         . . . (20) 

 
And    
 

RA AA.                                                                                         . . . (21) 

 

Although, in general, the products AB and BA need not be similar, AA is always similar to AA (see [3, Section 4.6]). Therefore, 
in the subsequent discussion of the secondary spectral properties of these matrices, it will be suffices to consider only one of them, 
say, AL. 
 
The secondary spectrum of AL has two remarkable properties: 
 

 It is s-symmetric about the real axis. Moreover, the s-eigen values λ and  have the same multiplicity. 

 The negative s-eigen values of AL (if any) are necessarily of even algebraic multiplicity. 
 

Let,     1S L nA ,...,                                                                                        . . . (22) 
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be the secondary spectrum of  AL. 
 

Definition 7 
 
The con-s-eigen values of A are the n scalars μ1,…,μn introduced as follows: 
 

 If λi∈ λs(AL) does not lie on the negative real semiaxis, then the corresponding  
con-s-eigen value μi is defined as the square root of λi with a nonnegative real part: 
 

1 2 0i i i, Re .                                                                                          . . . (23) 

 
The multiplicity of μi is set equal to that of λi. 
 

 With a real negative s-eigenvalue λi∈λs(AL), we associate two conjugate purely imaginary con-s-eigen values 
 

1 2
i i .                                                                                                         . . . (24) 

 
The multiplicity of each con-s-eigen value is set equal to half the multiplicity of λi. 
The set 
 

   1S nC A ,...,                                                                                          . . . (25) 

 
is called the conjugate secondary spectrum of A. 
 

For a s-symmetric A, we have  LA A ,A A A; 
 thus, the con-s-eigen values of A are identical to its s-singular values. 

If A is s-skew symmetric, then 
 

LA A , A A A.    
 

 
As noted above, every negative s-eigen value λ of AL has an even multiplicity. It gives rise to two purely imaginary con-s-eigen 

values i   of half the multiplicity. The most important property of s-normal matrices is that every matrix of this class 

can be transformed into a secondary diagonal matrix by a proper s-unitary similarity transformation. The secondary diagonal 
entries of the transformed matrix are the s-eigen values of A. This spectral theorem for normal matrices has the following 
counterpart in the theory of unitary congruences (Vujici et al., 1972 and Wigner, 1960). 
 

Theorem 1 
 

Every con-s-normal matrix   nA M C can be brought by a proper s-unitary congruence transformation to a block diagonal 

form with diagonal blocks of orders 1 and 2. The 1-by-1 blocks are nonnegative con-s-eigen values of A. Each 2-by-2 block 

corresponds to a pair of complex conjugate con-s-eigen values ji

j j je ,


   and has the form 

 

2

0

0j

j

i

je







 
 
  

                                                                                      . . . (26) 

 

Or   
0

0
j

j

.




 
 
 

                                             . . . (27) 

Every matrix   nA M C can be represented in the form 

 
A = S + K,                                                                                        . . . (28) 
 

where      1 1

2 2
S SS A A , K A A .                                             . . . (29) 

 

Matrices (29) are called the real and imaginary parts of A, respectively. 
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For a conjugate-s-normal matrix A, decomposition (28), (29) has a number of special properties. We need the property stated in 
the following proposition. 
 

Theorem 2 
 
Let A be a conjugate-s-normal matrix with decomposition (28), (29). Then, thecon-s-eigen values of S (respectively, K) are the real 
(respectively, imaginary) parts of the con-s-eigen values of A. 
 

Corollary 2 
 

If a conjugate-s-normal matrix A has a pair of complex con-s-eigen values iK , ,    then σ is a multiple con-s-eigenvalue 

of S = (A + AS)/2. The number of real con-s-eigen values of A is equal to the multiplicity of zero as a con-s-eigen value of                   
K = (A – AS)/2. We return to conjugate-s-normal matrices of form (2) that satisfy relations (16)–(19). In this case, it is easy to see 
that matrices (29) are tridiagonal along with A. 
 

Lemma 2  
 
The multiplicity of each con-s-eigen value of S (respectively, K) is at most two. 
 

Proof  
 
For definiteness, we consider S. The con-s-eigen values of this matrix are nonnegative scalars whose squares are the conventional 
s-eigen values of the five-diagonal matrix 
 

LS SS S S. 
 

 
The irreducibility of S ensures that all the entries of SL lying on the diagonal i – j = 2 are nonzero. It follows that 
 

  2L nrank S xI n x .    �
 
Therefore, the multiplicity of each s-eigen value of the Hermitian matrix SL is at 

most two. 
 

Corollary 3  
 
A con-s-normal matrix A described by relations (16)–(19) has at most two real con-s-eigen values. All the pairs of conjugate con-
s-eigen values of A have distinct real parts. The corresponding con-s-eigen values of S = (A + AS)/2 are double. By contrast, all the 
nonzero con-s-eigen values of K = (A – AS)/2 are simple.  These assertions are direct implications of Lemma 2, Theorem 2, and 
Corollary 2. Corollary 3 makes obvious the following ultimate conclusion: the con-s-spectrum of a con-s-normal matrix 
described by relations (16)–(19) cannot be located on a line in the complex plane. We conclude this section by a small illustration 
of the facts given above. It is easy to verify that the tridiagonal matrix 
 

1 1 0

1 1 1

0 1 1

 
 

    
   

i

A i i

i

 

 
is conjugate-s-normal.  
Its s-symmetric part 
 

1 0

1

0 1

 
 

  
  

i

S i i

i
 

 
has the simple con-s-eigen value 1 and the double con-s-eigen value is also 1. The nonzero con-s-eigen values of the s-skew 
symmetric part 
 

0 1 0

1 0 1

0 1 0

 
 

  
  

K
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are equal to 2i .  Thus, 

 

   1 1 2 1 2  SC A , i , i .
 

 

On The Representations of The Transposed Matrix 
 
Returning to representation (5), we recall how Proposition 1 can be proved. Assume that the degree k of the polynomial f in (5) is 
greater than one. Then, it is easy to see that the entries of A lying on the diagonals i – j = k and j – i = k must be nonzero. This, 

however, contradicts the fact that f(A) must be the tridiagonal matrix A
. The following assertion proved in [4] can be considered 

an analogue of representation (5) for con-s-normal matrices. 
 

Theorem 3 
 

A matrix   nA M C  is con-s-normal if and only if 

 

   S
R LA f A A Af A                                                                                        . . . (30) 

 

for a polynomial f with real coefficients. This polynomial can be chosen so that its degree is less than n. 
Suppose that A ≠ 0 and the polynomial f in (30) has a zero degree; that is, 
 

SA A.  
 
A comparison of the norms of the left- and right-hand sides reveals that |α| = 1. Furthermore, it is easy to verify that the equality 
 

S iA e A  
 

is possible only for φ = πk, k∈Z. Thus, in this case, A is either s-symmetric or s-skew symmetric. Now, we show that, for a con-s-
normal matrix described by relations (16)–(19), the degree k of f in representation (30) must be at least [n/2]. Indeed, assuming the 
contrary, that is, 
 

2
0 1

2 2

n n
k ,

 
       

 
we observe that A (AL)k is the only monomial in the matrix A f(AL) that has nonzero entries on the diagonal i – j = 1 + 2k (which 
does not exceed n – 1) and on the diagonal    j – i = 1 + 2k. The same diagonals must be nonzero in A f(AL). This contradicts the 
fact that A f(AL) must be the tridiagonal matrix AS. 
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