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INTRODUCTION

Mathematical models have become essential tools in analyzing and understanding the dynamics of infectious diseases. The SIS
epidemic model is an important model in epidemiological patterns and disease control, and it has been studied by many authors
(Kermack and Mckendrick, 1927; Gao and Hethcote, 1992; Li and Ma, 2002 and Eldoma, 1999). In real life, some diseases may
be passed from one individual to another via vertical transmission. That is to say, vertical transmission of diseases is the passing of
an infection to offspring of infected parents. This mode of transmission plays an important role in the spread of disease. In recent
years, the studies of epidemic models incorporating vertical transmission have become one of the important areas in mathematical
theory of epidemiology (Zhang and Jia, 2014; Ainseba ef al., 2016 and Kelatlhegile and Kgosimore, 2016) and they have largely
been inspired by the works of Busenberg and Cooke (Busenberg et al., 1983; Busenberg and Cooke, 1988). Some examples of
such diseases are AIDS, Hepatitis, Zhaika, etc. To the best of our knowledge, there are only few works on research of SIS
epidemic with vertical transmission. Therefore, we propose a deterministic SIS epidemic model with vertical transmission, which
reads

{S’(t) = A+bS(t)—dS(t)— BS(t) + yI(t)— BS()I(t) +bql(2), "

I'(ty =pSWI@)—(d+a)l(t)-BI(t)-yI(t)+bpl(2),

where S(¢),/(¢) denote the number of susceptible individuals and infective individuals at time # respectively. b represents the
birth rate, d denotes the death rate, ﬂ denotes the average number of adequate contacts with susceptible for an infective
individual per unit time, ¥ denotes the recovery rate, ¢ stands for the probability that a child who is born from infectious mother is
susceptible, p stands for the probability that a child who is born from infectious mother is infected. B denotes the output rate.

All parameter values are assumed to be nonnegative, p+ ¢ = 1.Denote the total populations N(¢) = S(#)+ (), then

limsup log N(®) < A .
=40 t d+B-b
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From the biological significant of N(¢), throughout this paper, we always assume that d + B —b > 0 . Transfer diagram for
model (1) is described in Fig. 1.

bS qbl 1 pbl
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Fig. 1 The transfer diagram for the model (2).

In realism, epidemic models are always affected by the environmental noise (Mao,, 1997). Thus, it is necessary to study how the
environmental white noise affects dynamic behavior of the epidemic model. In this article, based on a deterministic epidemic
model (1), we shall propose a new model by taking into account the effect of white noise. We assume that fluctuations in the

environment will manifest themselves mainly as fluctuations in the parameterﬂ , that is ,Bdt +0dB(t). Then we get the
stochastic analogue of system (1):

{dS(t) =(A—(d+B—-b)S+yI—BSI+bgl)dt —oSIdB(t), o

dl(t) =(BSI+bpl—(d+a+B+y)l)dt+ocSIdB(t),

where & is a positive coefficient and B(f) is a standard Brownian motion.

The rest of this paper is organized as follows. In section 2, we deduce the condition which will lead the disease to die out. The
condition for the disease being persistent in mean is given in next section.

Extinction

Theorem 1.1 For any given initial value (5(0),7(0)) € R’, there is a unique global positive solution (S(¢),1(¢)) of system (1)

for all > 0, and the solution will remain in Rf with probability 1. The proof of this theorem is rather standard and hence is

omitted.

Theorem 1.2 Let (S(2),(£)) be the solution of system (2) with initial value (S(0),7(0))eT".

s Bd+B-b)

If o and R, <1

limsupws(d+3+a+y—bp)(1§0—1)<0 or

t—+0
2
if o2 > LU¥B=0) p
A 2d+B-b+a+y)
, log 7 2
lim sup Ogt (t)Szﬂz—(d+B+a+7/—bp)<O.
t—>+o0 (@2

namely / (t ) tends to zero exponentially with probability one.
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Proof: For the system (2), we have
‘Ki;D:dL{d+B—MS—M+B—b+aﬂ,

3)
s0

= A d+B-b+a-+
5()= - T(6)- (o).
=050 davsp OV

3 1 S@+1(t) S0)+1(0) and  Ous
Where¢(t)_d+3—b( ; ; j dtl_l>r+1’010§0(t) Oas.

By the Ito formula, we have

d(log I(1)) = [ BS(t)—(d —bp+a+y+B) —%Sz(t)J +0S(t)dB(1),

Then

logtl(t) _log tI(O) BS({t)—(d—-bp+B+a+y) —%2; L:Sz(r)dr

+Z [ S(r)aB(r)
log:(0)+ﬂS(t) (d - bp+B+a+}/)—_(S(t)) Lo jS(r)dB(r)

_ log 1(0) A d+B-bta. )

- +ﬂ[d+B—b d+B—bh 1(1) qo(t)j (d-bp+B+a+y)
_0_2( A _d+B—b+a_

2
>\ d+B=b  d+B—b I(t)—co(t)J +7jOS(r)dB(r)
= PA _(d—bp+B+a+7/+o-2—A22j_o__2(wJ
d+B-b 2d+B-b)’) 2\ d+B-b
T2 (d+B-b+a)f(d+B-b)—c’A) |~
x (1 (1)) ( d+B_b) jl(t)+¢(t)’
4)
where

¢(t):10g1(0)_(ﬂ_ oA j (t)_a(d+B—b+a)(p(t) _

‘ d+B-b)" PR T
o’ , log I(O) o’A  o’(d+B-b+a)
=~ O+ [ S()dB(r) < =522 (ﬁ+d+3_b+ s J| 0]

_%2¢2 )+ [, S(r)dB ()

And

¢(t)>logl(0) (/ﬂ o’A_ o'd+B-bta)

1
lim - S (r)dB(r) =0 a.s. according to strong law of large numbers, we have hm ¢(t )=0 as.
>+ f

d+B—b  d+B-b jl()l SO O] S0dBe) Since - limp(n=0 as

and
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Case 1: If o2 < W , then it follows from (4) that
242
IOgI(t)s PA___ d—bp+B+a+7/+O-—2 + (1),
t d+B-b 2(d +B-b)

which together with the property of ¢(l ) implies

242
limsuplogl(t)ﬁ LA d—bp+B+(x+7/+L2
t—+w0 t d+B-b 2(d+B—b)

= (d-bp+B+a+y)R,-1)<0

2
Case 2: If o > 'B(d +B_b) \Y 'B , then
A 2d+B-b+a+y)
242
log[(t)s A d—bp+B+a+y+L2
t d+B-b 2(d+B-b)
. oy 2 _ 2 . 2
3 (d+B-b+a)fp(d+B—-b)—c°A) [(t)_a_ d+B-b+a (I(t))2+¢(t)
(d+B-b) 2 d+B-b
242 24 EEASY
sﬂ—A— d-bp+B+a+y+ oA 5 +(0A2ﬂ(d+B ?)) +@(t)
d+B-b 2(d+B-b) 20°(d + B-b)
ﬁZ
==——-—(d-bp+B+a+y)+¢4),
20
Therefore
2
limsuplog#ﬁ%—(d—bp+3+a+)/)<0a.s.
t—>+0 O

Remark 1.3 From theorem 1.2 we can obtain lim /(¢) =0 a.s.

For (3, t—+0
d(S(t)+1(1))

= A= (d+B=DYS(O)+ () -l (1),

then
S(t) + [(r) = e @+E0r [(S(O) +1(0))+ jo (A- a1(r))e<d+3-b>rdr}.
Applying L'Hospital's rule leads to

A

lm(S()+1(0) =———as.

Therefore, we derive

lim S(¢) = ﬁ a.s.
t—>+00 + —

Persistence of the disease

Theorem 3.1 If
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B(d +B—b)

1~€0 >1 and 0~ < , then for any initial value (S(0),/(0)) € R_, the solution of the system (2) obeys

liminf 7 (¢) > & as.
t—>+0
and

limsup 7 ()< &, as.

t—+00

Where

_(Ry-1)(d+B-b)d-bp+B+a+y) ‘- (R,~1)(d +B~b)’(d—bp+B+a+y)

L(d+B-b+a) (f(d+B-b)-c’ANd+B-b+a)

S

That is, [ (t ) will rise to infinitely often with probability one.

p(d+B-b)

Proof : If 1?0 >1 and 07 < then from (3) we have

2 A2
IOg[(t)s A a’—bp+B+oz+;/+L2
t d+B-b 2(d+B-b)

((d+B-bta)f(d+B-b)—c°A)
(d +B—-bY’

jf () + (1)

(d+B—b+a)(,B(d+B—b)—azA)j

:(d—bp+B+a+7)(Ro_l)_( (d+B-by

<1 (1) +¢(2),

which together with Lemma (11), we have

- ey
limsup T (¢) < (R,-1)(d+B-b) 2(a’ bp+B+a+y) s,
t=>40 (fd+B-b)—c°A)d+B-b+a)

On the other hand,

log I(¢) _ log 1(0)
t

t +ﬂ§(t)—(d—bp+B+a+y)—%2;J.;S2(r)dr+%J.; S(r)dB(r)

Zlog[(0)+ﬂ( A d+B-b+a

I({t)-o(t) |-(d-bp+B+a+
t i+5-5 d+8-5 (”()J( prBraty)

o’A?

o.
_m‘FTlntoS(V)dB(V)
_ BN o’ A? _pd+B-b+a)~
=Bl (d bp+B+a+y+2(d+B_b)2j 15D 1) +y(t)
e 5 _,B(d+B—b+a)—
=(d-bp+B+a+y)R,—-1) diB_b) I(t)+w(?),

log 1
where W (1) = Ogt ©_ Lo(t) +%J.t S(r)dB(r) and limsupy () =0 a.s. then together with Lemma (11), we have

0 —>+0
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liminf T () > (R,-1)(d+B-b)d-bp+B+a+y) us
140 pd+B-b+a)

Remark 3.2 Theorem 3.1 tells us that the infected population is persistent under some conditions, we can prove the susceptible
population S (t) is also persistence in this situation. In fact, from (3) we get

A _d+B—b+aT(t)_(S(t)+1(t))—(S(0)+I(O))‘

“d+B-b d+B-b (d+B-b)t

S(t)

Furthermore, liminf 7 (f)>¢&, indicates that for V77 >0(57 < &), there exists a T(®) such that 1)=& ~n, for
t—>+0

t > T(w). Then we get

Ss—b _drBobra . .y SO+HO)-EO+10)
“d+B-b d+B-b 7 (d +B-b)t '

Letting £ —> 00 and 77 arbitrary, we get

A _R-Dd-bp+Bra+y)

limsup S (¢) < N
ta+oop ( ) d+B-b ﬂ s
Note that limsup 7 (7) < &, , then by similar arguments, we have
t—>+0
liminf S > — A _(d=bp+Braty(R -Dd+B-b)
t—>+0 d+B—b ﬂ(d-}—B—b)—aA
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