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INTRODUCTION 
 

Let Cnxn be the space of nxn complex matrices of order n. For , n nA C  let TA , A , A*, SA , 
A  and -1  A denote the transpose, 

conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose and inverse of matrix A respectively. The 
conjugate secondary transpose of A satisfies the following properties such as 

     , ,    A A A B A B AB B A
      

. Etc 

 

Definition 1 

 A matrix  n nA C  is said to be normal if 
* * .AA A A  

Definition 2 

 A Matrix  n nA C  is said to be conjugate normal (con-normal) if  
* * .AA A A   

Definition 3  

 A matrix   n nA C   is said to be secondary normal (s-normal) if .AA A A 
   

Definition 4 

 A matrix   n nA C  is said to be unitary if  
* * . AA A A I  

Definition 5 

 A matrix  n nA C  is said to be s-unitary if . AA A A I 
 

Definition 6 [2] 

A matrix  n nA C  is said to be a conjugate secondary normal matrix (con-s-normal) if AA A A 
 where 

S
A A

. 

                                                                                                        . . . (1) 
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Properties of Con-s-Normal Matrices 
 
Theorem 1 

 A matrix A is con-s-normal iff there exists an s-unitary matrix U such that 
sUAU is a direct sum of non-negative real 

numbers and of 2x2 matrices of the form:
-

a b

b a

 
 
 

    where a and b are non negative real numbers. 

 

Proof 
 

Let A be con-s-normal where A = P+Q where 
sP P  and   - sQ Q .  Then

s sAA A A gives

            -
s s s sP Q P Q P Q P Q or P Q P Q P Q P Q

 
         

   

and so:   

- -   - -PP QP PQ QQ PP QP PQ QQ   or -QP PQ . 

 

There exists a s-unitary U  such that 
SUSU D is a secondary diagonal matrix with real, non–negative elements. Therefore 

 
S SS SUQU U P U U PU U QU or WD DW  where - SW W . LetU be chosen so that D is such that  0i jd d 

for i j where id is the 
thi secondary diagonal element of  D. ( )ijW t , where -ji ijt t then ijij j it d d t , for j>i, and 3 

possibilities may occur : if 0,j id d   then ijt  is real; if 0,j id d  ijt  is arbitrary (through -
S

W W  still holds); and if 

,j id d  then ijt =0 for if ijt = a+ib then (a+ib) jd = id (a-ib) and ( -  ) 0j ia d d   implies a=0 and   0i jb d d   implies 

-i jd d  (which is not possible since the di are real and non–negative and j id d ) or b=0 so ijt =0. So if 

1 1 2 2 ...S
k kUPU d I d I d I    where   denotes direct sum, then 1 2 ....S

kUQU T T T     where - S
i iQ Q  is real 

and - S
K KQ Q   is complex iff dk = 0. For each real iQ  there exists a real-s-orthogonal matrix Vi so that 

S
i i iVTV  is direct sum of 

zero matrices and matrices of the form 
0

0

b

b

 
    

where b is real (Bellman, 1960).  If - S
K KQ Q  is complex, there exists a 

complex  s-unitary matrix kV  such that k k kV Q V Q  is a direct sum of matrices of the form [3] so that if 1 2 ... kV V V V     

then 
S SVUPU V D and 

S SVUQ U F the direct sum. Therefore 
S SV UAU V D F   this is the desired form. If  A and 

B are two con-s-normal  matrices such that AB BA  then A and B can be simultaneously brought into the above secondary 

normal form under the sameU (with a generalization to a finite number) but not conversely; if A is con-s-normal , AA  is s-normal 

in the usual sense, but not conversely; and if A is con-s-normal and AA  is real, there is a real secondary orthogonal matrix which 
gives the above form. Among properties of con-s-normal matrices not obtained but of subsequent use are the following: 
 

 A is con-s-normal iff  
SA HU UH   where H is s-hermitian and U  is s-unitary. 

 For if  A HU  is a polar form of A, then 
S

U HU K  is such that A=HU=UK and if ,
S SAA A A then 

 
22 SH K  and since this is an s-hermitian matrix with non-negative roots, H = KS and 

SA HU UH  . The converse is 

immediate. This same result may be seen as follows. If 
SUAU F  is the s-normal form in Theorem 1, r rF D V VD  where 

Dr is real secondary diagonal and V is a direct sum of 1’s block of the form  
-1

2 2 2

-

a b
a b

b a

 
  

 
 which are s-unitary. 

Therefore 
S S S S

r rA U D U U VU U VU U D U   which exhibits the polar form in another guise. 

 A is both s-normal and con-s-normal iff  
SA HU UH UH    so 

SSH H H  so that H is real. 

 If  
SA HU UH   is con-s-normal, then UH  is con-s-normal iff 

2 2  ,HU U H that is HU2 is s-normal. For if UH 

is con-s-normal,  SUH H U so that
2 2    SHU UH U U H  ; and if 

2 2  HU U H , then 

    SHUU UH U UUH   or   SH U UH . 
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 A matrix A is con-s-normal, iff A can be written     A PW WP   where 
SP P and W is s-unitary. If A is con-s-

normal, form the above   
S S S SS

r rA U FU U D UU VU PW U VUU D U WP      where 
S

rP U D U
  

s- 

 symmetric and 
SW U VU  is s-unitary. Conversely, if ,A PW W P 

S S S SS SAA PWW P A A P W P   . 

Note that if B is con-s-normal, and if B=PU where 
SP P  and U is s-unitary, it does not necessarily follow that 

;B UP but it possible to find on P1 and U1 such that 1 1 1 1B PU U P   holds. This may be seen as follows. If 

B=PU is con-s-normal, Let V bes-unitary such that 
SVPV D is secondary diagonal, real and non negative, so that 

S S SVBV VPV V U V DW   is con-s-normal from which 
S S SDWW D W D DW  or since D is real, 

2WD =
2D W and WD=DW since D is non-negative. Then      S S SSB V DV V WV PU V WV V DV  

which is not necessarily equal to    S S
UP V W V V DV However, if 1 1 2 2 ... k kD r I r I r I    , i jr r  

for i j , then 1 2 ... KW W W W    .  

 

Since each Wi is s-unitary, it is con-s-normal and there exist s-unitary Xi so that 
S

i i i iX W X F is in the real s-normal form of 

Theorem 1 if 1 2 ... ,kX X X X     then 
S S S SXVBV X XDWX DXWX DF FD     where 

1 2 ... kF F F F    .  

 
So 

 

  

   11 1 1

1

1

 

 

.

S S S S

S S S S S

S S S

S S S

B V X DX V V X F X V

V X FXV V X DX V PU U P and

P V X D X V V DV P and

U V X F X V V WV U



  

  

  

 

 
Products of s-Normal Matrices 
 
If A, B and AB are s-normal matrices then BA is s-normal; a necessary and sufficient condition that the product AB, of two s-
normal matrices A and B be s-normal is that each commute with the s-hermitian polar matrix of the other. First a generalization of 
this theorem is obtained here and then an analog for the con-s-normal case is developed. 
 

Theorem 2 
 

Let A be an s-normal matrix. Then AB and BA are s-normal iff    S S
A A B B A A and    S S

B B A A B B . (In a sense, 

the latter condition might be described as stating that each matrix is s-normal relative to the other). 
 

Proof 
 

If AB and BA are s-normal, Let U be a unitary matrix such that 
S

UAU D is secondary diagonal. 0i ji jd d d d  for i < j, 

and let  1

S

ijUBU B b  . From 
S S S S

ABB A B A AB it follows that 11 1

S S
DB B D B DDB ; by equating secondary 

diagonal elements it follows that 
1 1

n n

i i j j j ii i j j j i
j j

d d b b d d b b
 

  for i=1,2…n. Similarly from 
S S S S

BAA B A B BA

follows 1 11 1

S S
B D D B D B B D and 

1 1

n n

j ij i jij ij i ji
j j

d d b b d d b b
 

  . Let i=1 in each of these equations So that 

1 1 11 1 1
1 1

n n

j j jj j j
j j

d d b b d d b b
 

  and 1 1 11 1 1
1 1

n n

j j jj j j
j j

d d b b d d b b
 

   from which follows   
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   11 11 1 1 1 1
1 1

j

n n

j jj j j j j
j j

d d d d b b d d d d d b
 

      

 

so that     11 1 1 1 1
1

0.
n

jj j j j j
j

d d d d b b b b


     

 

Let 1 1 2 2 1 1... ,l l l ld d d d d d d d     then 1 1 1 1 0j j j jb b b b   for  1, 2,...j l l n    since 1 1 j jd d d d is zero or 

positive and is latter for .j l  So 1 0jb   and 1 0jb   for 1, 2,... .j l l n    For i=2,…..l in turn it follows that bij=0 and 

bji=0. For i=1,2,….l and for j=l+1,l+2….n. Let 1 1 2 2 ...
S

S SUAU D r D r D r D      where the ri are real ri > rj for i < j and 

the Di are s-unitary Then by repeating the above process it follows that 1 1 2 ...
S

SUBU B C C C      is conformable to D. 

 

It follows from the given conditions that   
i

S S

ii ii i i i i i i ir D C C D r C r D D r C and 
i i

S S

i ii i i i i i i iC r D D r C r D C C D r  or that 

i i iC C C D
S S

i iiD C  and 
i i iC C C D

S S

i iiD C   if ri > 0. If  

 

rs=0, Ds is arbitrary insofar as D is concerned and so may be chosen so that 
S S

S SS S S SD C C C C D in which case Ds  may not be 

secondary diagonal. But whether or not this is done, it follows that 1 11 1

S S
DB B B B D  and that 1 1

S S
B DD D DB  so that 

   S S
A BB B B A

 
and    S S

B AA A A B . The converse is immediate. It may be noted that if the roots of A are all 

distinct in absolute value, B must be s-normal. The following further clarifies the situation. 
 

Theorem 3 
 
 Let A = LW = WL be the polar form of the s-normal matrix A. Then AB and BA are  
 

s-normal iff 
S

B NW  where N is s-normal and LN = NL. 

 
Proof 
 

In the proof of the above theorem, let i i i i iC H U U K   be polar forms of the Ci. Then 
S

i i i iU H U K  so that 

.
S S S S S S S

i i i i i i ii i i i iU C C U C C orU C C C C U   Also, from the above .
S S

i ii i i iD C C C C D   

 

Let U
S

i iiR D  then 
S S S S S S S S

i i ii i i i i i i ii i i i i i iR C C D U C C D C C U C C D U C C R     where Ri is s-unitary (if rs = 0, DS may 

be chosen  
S

SU  as described above). So 
2 2

i i i iR H H R  and since Hi has positive or zero roots,  i i i iR H H R  and so 

.
S S

i ii iH R R H  Then 
S S S

r UA U DU U D UU D U LW WL    and 

  

 

 

 

1 1 2

1 1 2 2

1 21 1 2 2

-

...

...

...

S S

S

S

S S

S S S S

SS S

S

B U BU U C C C U

U H U H U H C U

U H R D H R D H R D U

NWC

    

   

   



 

where  1 21 2 ...
S S S S

SSN U H R H R H R U     (which is s-normal since the s-hermitian Hi and  s-unitary 
S

iR  commute) 

and  1 2 ... .
S S

SW U D D D U     It is evident that LN = NL.  
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Conversely, if A = LW = WL and 
S

B NW  as described, then 
S

AB WLNW which is obviously s-normal as is 

.
S

BA NW WL NL   It is easy seen that 
S

B NW is s-normal iff .
S S

NW W N  if  
S S

B NW HR W   is con-s-

normal; then    S S SSB H RW RW H RHW    (form property (a)) so 
S SSW H HW  or 

SWH H W  and 

    .
S S

W BB B B W
 

 
If A is s-normal and B is con-s-normal then AB is s-normal, it does not necessarily follow that BA is s-normal though it can occur. 

For example, if  
SB HU UH   is   

 

con-s-normal and if 
S

A U  then 
S SAB U UH and 

SBA HUU H   are both s-normal. But the following is an example 

in which AB is s-normal but not BA. Let 
SB HU UH   be 

  

con-s-normal but not s-normal (i.e, H is not real by property (b)) and let H be non-singular. Let 
-1A H is s-hermitian (So s-

normal) and not con-s-normal (since 
-1H is not real). Then 

-1AB H HU U   is s-normal if BA were also s-normal, then by the 

above theorem    S S
A A B B AA  and    S S

B B A A BB . But    
2 -1S sB B A H H  and      

-1 2S
A BB H H

and if these were equal,  
2 2sH H  would follow which means that    

222 SsH H H   so that H2 real. But this is not 

possible for if 
S

H VDV  where D is secondary diagonal with positive real elements (since H is non singular), then 

2 2 S SH VD V V DV   if H2 is real so that 
2 2S SV VD D V V  so 

S SV VD DV V so 
S SVDV V DV H   is real 

which contradicts the above assumption.  
 

Theorem 4 
 
If A and B are con-s-normal and if AB is s-normal then BA is s-normal.   
 

Proof 
 

Let U be a s-unitary matrix such that 
SUAU F  is the s-normal from described in Theorem 1 and where 

2 2 2
1 1 2 2 ...

S S
k kF F FF r I r I r I     which is real s-diagonal with 2 2 2

1 2 ... 0kr r r     There 
2

ir may be either the 

squares of secondary diagonal elements of F or they may arise when matrices of the form 
-

a b

b a

 
 
 

are squared. Assume that any 

of the latter whose 
2

ir  are equal are arranged first in a given block followed by any secondary diagonal elements whose square is 

the same 
2

ir .  

 Let 1

S
UBU B  which is con-s-normal and then 1

SSUAU UBU F B is s-normal Let V  be the s-unitary matrix. 

  
1/ 2 1/ 2

1/ 2 1/ 2

i
V

i

 
  
    

 
Then the following matrix relation holds, independent of a and b: 

  
- 0

- 0

Sa b a bi
V V

b a a bi

   
        

 

 Let 1 2 ... kF F F F     where the direct sum is conformable to that of 
S

F F given above  2. ,  
S

i i i ii e F F r I

and consider 1 1 2 ... i iF G G G r I      where each Gi is 2x2 as described above and I is an identity matrix of proper size. 

Let 1 ...W V V V I      be conformable to F1; define Wi for each Fi in like manner and let 1 2 ... .KW W W W    If 
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0, .k kr W I  Then 
S

WFW D  is complex secondary diagonal, where if di is the ith secondary diagonal element 

11 .i ii id d d d   Then        1 2

S S S S SSW UAU W W UBU W WFW WB W DB   is  s-normal for 2 1

S
B WB W (or 

1 2

S
B W B W ). Since 1B is con-s-normal, 1 11 1

S SB B B B  so that 2 22 2

S S S S S SW B WW B W W B WW B W  or that 

2 22 2

S S S SB B WW WW B B .Now 
SVV  is a matrix of the form 

0
.

0

i

i

 
 
   

So that 
SWW  is a direct sum of matrices of this form 

and one’s. 
 

Let 2 ( )ijB b and consider    2 22 2 .
S SS S SWW B B WW B B  Let  22 ,

S

ijB B c   22 .S
ij ijB B f c and fij are 

identifiable with the bij, both matrices being 
s-hermitian.  Consider two cases: 
 

 If 11 jjd d d d  for all j (where dj is the jth secondary diagonal element of D), then D=KDu where Du is s-unitary 

diagonal. Since  1 2 2 2

S

u uWFB W DB KD B D KB   is s-normal, then  2 2 1

S

u u uD D B K D B D WB FW   

is s-normal, as is 1 
S SB F UBU UAU  so BA is   s-normal. 

 If 11 jjd d d d  for some j, let 1 21 2 ... 1lld d d d d d for l n    (so that 11l ll ld d d d  ). 

 Suppose 1 1 2 1 1F G G r I    where I1 is the 2x2 matrix (The general case will be seen to follow from this example).

From   22

S
ss

WW B B   22
S

ww B B
s

  and the fact that          W1=V  V  I1 it follows that C11=f22,C22=f11, C33=f44, 

C44=f33, C55=f55, C66=f66 (and 12 3412 34.C f C f  etc) there equalities supply the following relation (where the 

summation is over i=1 to n). 

11 1 2 221 2

22 2 1 112 1

433 3 4 443

4 344 4 3 33

5 555 5 5 55

6 666 6 6 66

;

;

;

;

;

;

i ii i

i ii i

ii ii

i ii i

i ii i

i ii i

C b b b b f

C b b b b f

C b b b b f

C b b b b f

C b b b b f

C b b b b f

   

   

   

   

   

     
 
DB2 is s-normal so that the following relations also hold: 
 

1 1 11 1 1

1 2 22 2 2

3 3 33 3 3

4 4 44 4 4

5 5 55 5 5

6 6 66 6 6

, ;

, ;

, ;

, ;

, ;

, ;

i i i ii i

i i i ii i

i i i ii i

i i i ii i

i i i ii i

i i i ii i

d d b b d d b b

d d b b d d b b

d d b b d d b b

d d b b d d b b

d d b b d d b b

d d b b d d b b

 

 

 

 

 

 
 

 

Since 1 21 2d d d d on combining the first 2 relation in each of these sets, 

   1 1 1 2 2 1 11 1 1 22i i i i i i ii
d d b b b b d d b b b b      =

 
 1 1 2 2i i i i i id d b b b b  so that 
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  1 1 1 2 21
- 0i i i ii i

d d d d b b b b   1 1 j j
d d d d  for j=1,2…6 but for j beyond 6, 1 1

0j j
d d d d   or 

1 1 2 2 0i i i ib b b b   or 1 20  0i ib and b   for i=7,8….n similarly, bi3=0 and bi4=0 for i>6 the third relation in each set give 

bi5=0 and bi6=0 for i>6. 
 
        On adding all 6 relation in the first set, 
 

              
6 6 6 6

, 1 1 7 , 1 7 1

n n

ij ij ij ijij ij ij ij
i j i j i j i j

b b b b b b b b
     

       
 

 

and on canceling the first summations on each side, 
 

                                    
6 6

1 7 7 1

.
   

   
n n

ij ijij ij
i j i j

b b b b
 

 
But the right side is zero from the above, so the left side is 0 and so bij=0 for i=1,2…6 and j>6. From this it is evident that this 

procedure may be repeated and that if    D=r1D1 r2D2… rkDk. Where the Di are s-unitary and the ri non–negative real, as 

above, then B2=C1 C2… Ck Conformable to D then riDiCi is s–normal so ( )S
i i i i i i i iD D C r D = C r D  is s-normal so B2D is 

s-normal. So B1F and so 
S SUBU UAU and  BA. 

 
Theorem 5 
 

If A and B are con-s-normal then AB is s-normal iff 
S S

A AB BAA  and 
S S

ABB B BA (ie, iff each is s-normal relative to the 
other). 
 

Proof 
 

If AB is s-normal, from the above 2 2

S S
D DB B DD so that 1 1

S S
F FB B F F or .

S S
A AB BAA  

Similarly DB2 is s-normal, 2 2 2 2 22 2 2
 

S S S S
DB B D B DDB so DB B B B D   or 1 11 1

S S
FB B B B F or .

S S
ABB B BA  the 

converse is directly verifiable.  
 

Theorem 6 
 

Let A and B be con-s-normal, if AB is s-normal, then A=LW=WLS (with L  s-hermitian and W s-unitary) and 
s

B NW . Where 

N is s-normal and 
S SL N NL ; and conversely. 

 

Proof 
 

As above, let r u

s s ssUAU F W DW w D ww D w   where Dr and Du are the 

 

 s-hermitian and s-unitary polar matrices of D) and  1 2 1 ... .
S S

K

s
UBU B W B W W C C W      As in the proof of Theorem 

3 if follows that for all i, 
S S

i i i ii i
D C C C C D  and 

S S
ii i ii i

s s
U C C C C U  with Ui as defined there, so that when 

S

i iiR D U

(where D, here, =r1D1 r2D2… rkDk as earlier) then
S

i ii i i i i i i iC H U H R D with H R R H   .   

 

Then since, WDr=DrW, 
S SS

r u r u

s
UAU W D wW D w D W D w

 
   

 
  and 

 

r u

S
u r

s s s
A U D U U w D wU LX

s s sU w D wU U D U XL

  
   
  

 
  
 

 

with r

s
L U D U s-hermitian and u

s s
X U w D wU   s-unitary.  
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Also, 
1 2 11 1 2 2

... k k k

s s s s s
U BU w H R D H R D H R D w N Y

 
     

 
 

Where
1 1 21 2

... k k

s s s s
N w H R H R H R w

 
    

 
 is s-normal  and  1 2

...
k

s
Y w D D D w   

 
is s-unitary; then 

  1 1 .  
ss s sB U NYU U NU U YU NX  

Where 1
sN U N U  is s-normal and .u

s ss sX U YU U W D wU   Also 

 1 1 1 1
sin ,r r r r

s sL N NL ce D N N D D N N D    so      s s s sULU UNU UNU ULU so 
s sL N NL .  

The converse is immediate.  
 

Products of Con-s-Normal Matrices 
 

It is possible if A is s-normal and B con-s-normal that AB is con-s-normal. For example, any con-s-normal matrix C=HU=UHS is 
such a product with A=H and B=U. Or if C=HU=UHS and A=H, then AC=H2U=HUHS=U(HS)2 is con-s-normal. The following 
theorems clarify this matter.  
 

Theorem 7 
 
    If A is s-normal and B is con-s-normal then AB is con-s-normal iff  

( ).Ss s s ssABB BB A and BAA A AB orB AA A AB    
 

 (If one were to define N is s-normal with respect to M” to mean 
S S

N N M M N N and Q is con-s-normal with respect to P to 

 mean 
S SPQQ Q QP  the above theorem would say that if A is s-normal and B is con-s-normal then AB is con-s-normal iff 

 (con-s-normal) B is s-normal with respect to A and (s-normal) A is con-s-normal with respect to B ). 
 

Proof 
 

If the latter condition hold, then;   
S S S Ss

AB AB ABB A BB AA   and    
SS S S SAB AB B A A B B BAA   

which are equal. 
 

Conversely, let AB be con-s-normal and let 1 1 2 2 ... k k

s
UAU D d I d I d I      where ,  .d d d d i ji ji j

 
 

 1  ,S SLet UB U B bij 
 

       
S S S S SSif AB AB ABB A AB B A AB AB  

 

 ,S S S SB A A B B AA B 
 

then       S S S SS S S S S S Ss
UAU UB U U B U U A U UB U U AU U A U U BU
 

 
 

 

So that 1 11 1

S S S
DB B D B DDB .  

Equating secondary diagonal elements on each side of this relation, we get 
1 1

 
n n

i ij j iji ij j ij
j j

d d b b d d b b
 

  , i=1,2,…n  

or  
 

 
1

- 0
n

i j iji j ij
j

d d d d b b


 . 

Let  
1 2 11 2 1

... l l ll
d d d d d d d d 

   then 0ijb   for i=1,2… l  and 1, 2...j l l n    since B1 is con-s-normal, 
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1 1

n n

ij jiij ji
j j

b b b b
 

  for  i = 1,2,…n on adding the first l  of these equation and canceling, 0ijb   for i= 1, 2...nl l  and  

j=1,2,...,l . In this manner if 1 1 2 2 ... t tD r D r D r D    with 1i ir r  and Di s-unitary, then 1 1 2 ... tB C C C   
 

conformable to D.  
 

Since 
2 2 ,

S S SS S S
i iii i i i i i i i i i ir D D r C r C C r C r D D r   for all i, 1 1

S SS SDD B B DD   and so 

 1 1

S S S S SS S SU DD UU B U U B UU DD U  or 
S sAA B BA A  or 

S SA AB BA A  or 
SSA AB BAA . 

 

Also,    1 1 1 11 1 1

S S S S S
D B B D B DDB D DB D DB B   so that    

S S

i ii ii i i iC C r D r D C C  for i = 1,2…t. (if rt = 0, this is 

still true and Dt  may be chosen to be identity matrix). Therefore 1 11 1

S S S S
B B D D B B  and 

 1

S S S S S SS S S SU B U U B U U A U U A U UB U U B U so 
S SS S S SB B A A B B or AB B B B A  . 

 
Corollary 1 
 

Let A be s-normal, B con-s-normal; if AB is con-s-normal, then BA is con-s-normal, and conversely.              
 
Proof 
 

From the above,  1

S S SUAU UBU DB  is con-s-normal, and if ,r uD D D Dr  real and uD  s-unitary, then since  

 1 1 1 1,S S S S S
u u u u r u r uD D D DB D D B D B D D B D     is con-s-normal,  as are 

S SU BU U A U  and B A .  

Reversing the steps proves the converse. 
 

If A is s-normal and B is con-s-normal, B A  is con-s-normal iff AB is con-s-normal, iff    SSB B A A BB  and 

   SSA A B B AA . Therefore if A is s-normal B is  

con-s-normal BA is con-s-normal iff    SSB B A A BB   and    
S SA A B B AA that is replace A by A  in the 

proceeding or      S SSB B A A BB A B B   and    
S SA A B B AA , thus exhibiting the fact that when AB is con-s-

normal, BA is not necessarily so. 
 

Theorem 8 
 

If A LW WL  is s-normal and  SB KV VK   is con-s-normal (where L and K are s-hermitian and W and V  are s-

unitary) then AB is con-s-normal iff , SLK KL LV VL  and WK KW . 

 

Proof 
 

If the three relations in the theorem hold, then AB LWKV LKWV  , and  

 
SS S SAB WLKV WKLV WKVL WVK L WV LK      is con-s-normal since LK is              s-hermitian and WV is s- 

unitary. 
 

Conversely, Let   S S S

r uA U DU U D U U D U LW    and 

     1 1 1

S S S SSB U B U U K U U V U KV VK      
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where 1K  and 1V  are s-hermitian and s-unitary and direct sums conformable to 1
SB  and D. A direct check shows that 

LK KL  and ,SLV VL also 1 1

S S

u uWK U D K U U K D U KW    since 1 11 1

S S

u uD B B B B D  implies

1 1 .u uD K K D
 
A sufficient condition for the simultaneous reduction of A and B is given by the following: 

 
Theorem 9 
 

If A is s-normal, B is con-s-normal and 
SAB BA , then 

S
WAW D  and 

SWB W F ,  the s-normal form of Theorem 1, 

where W is an s-unitary matrix; also AB is con-s-normal.         
          
Proof 
 

Let 
S

UAU D  
secondary diagonal and 2

SUBU B which is con-s-normal. Then 
SAB BA  implies 

2 2 2 .
S S S S S SDB UAU UBU UBU U A U B D B D   

 

Let 1 1 2 2 .... K KD C I C I C I    . Where the Ci are complex and i jC C  for i j and 2B  1 2 .... KC C C    let iV  

be s-unitary such that 
S

i i i iV C V F the real s-normal form of Theorem 1, and let 1 2 ... kV V V V    .  

Then ,
S S S SVUAU V D VUBU V F a    direct sum of the iF . 

 

Also,           
SAB BA        implies      

S S SB A AB          and so 

   .
S S S SS S SABB A AB B A B A AB AB AB      

 

It is also possible for the product of two s-normal matrices A and B to be con-s-normal if 
SQ HU UH   is con-s-normal and 

if A U and B H this is so or if 
SKV VK  is con-s-normal and if A=UK=KU is s-normal with K s-hermitian and V  and 

U s-unitary, for      , SB V AB UK V K UV UV K     con-s-normal. But if in the first example, 
2U H  is not s-

normal then HU  is not con-s-normal so that BA is not necessarily con-s-normal though AB is. When A alone is s-normal an 
analog of Theorem 2 can be obtained which states the following: if A is s-normal, then AB and ABS are con-s-normal iff 

,
S SS SABB B BA BB A AB B   and 

S SBAA A AB . (The proof is not included here because of its similarity to that 

above) when B is con-s-normal, two of these conditions merge into one in Theorem 7. It is possible for the product of two con-s-
normal matrices to be con-s-normal but no such simple analogous necessary and sufficient conditions as exhibited above are 

available. This may be seen as follows two non-real complex commutative matrices 
SP P  and 

SQ Q  can form a con-s-

normal (and non-real s-symmetric) matrix PQ which need not be 
  

s-normal. Then two s-symmetric matrices
- - 2 0

- 0 2

i i i
X Y

i i i

   
    
   

 are such that XY=Z is real, s-normal and con-s-normal 

(s-symmetric).   Finally if U and V  are two complex s-unitary matrices of the same order, they can be chosen so UV is non-real 

that is complex, s-normal and con-s-normal. If A P X U    and B Q Y V   AB PQ XY UV    where A 

and B are con-s-normal as in AB.   
 

(s-symmetric). A simple inspection of these matrices shows that relations on the order of      S SSB B A A BB BB A   and 

     S SSA A B AA B B AA   do not necessarily hold; these are sufficient, however, to guarantee that AB is con-s-

normal (as direct verification from the definition).  
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