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INTRODUCTION

let A", Z,A*, A%, A% and A" denote the transpose,

conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose and inverse of matrix A respectively. The
conjugate secondary transpose of 4 satisfies the following properties such as

(4°) =4, (4+B) =4°+B’, (4B) =B’A’ . Exc

Let C,, be the space of nxn complex matrices of order n. For Ae Cnxn ,

Definition 1
A matrix A€ C, is said to be normal if 44" = A" A.
Definition 2

A Matrix A € Cnxn is said to be conjugate normal (con-normal) if A4 = A A.
Definition 3

A matrix A€ Cnxn is said to be secondary normal (s-normal) if AA® = A°A.
Definition 4

Amatrix Ae€C, issaid to be unitary if A4 = A A=1.
Definition 5

Amatrix A€C
Definition 6 [2]

is said to be s-unitary if 44° =A°4=1.

n

— —s
A matrix A€ C,, is said to be a conjugate secondary normal matrix (con-s-normal) if AA’ = A°4 where A° =4 .

n

.(1)
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Properties of Con-s-Normal Matrices

Theorem 1

A matrix 4 is con-s-normal iff there exists an s-unitary matrix U such that UAU $is a direct sum of non-negative real

b
numbers and of 2x2 matrices of the form: { b where a and b are non negative real numbers.
- a
Proof
—g _
Let 4 be con-snormal where 4 = P+Q where P=P° and Q = -0°. Then AA~ = A% A gives

(P+Q)(7)S +Qsj=(Pg +Q9)(7)+@) or (P+Q)<7)+@)=(P—Q)(7)+@) and so:

PP+QP-PQ-00 = PP-QP+PQ-000rQP-PQ.

There exists a s-unitary U such that USU S=Disa secondary diagonal matrix with real, non—negative elements. Therefore

_ g _

UQUSU PU =UPUU QU or WD =DW where W =-W? . LetU be chosen so that D is such that d>d;>0
for 1<jwhere d.is the i" secondary diagonal element of D. W = (¢;), where t,=-t;then t,d, =d, Zij, for j>i, and 3
possibilities may occur : if d; =d; #0, then t; is real; if d,=d =0, t; is arbitrary (through w=-w" still holds); and if
d, #d,, then t,=0 for if 1, = a+ib then (a+ib)d;=d, (a-ib) and a(d; - d;)=0 implies a=0 and b(dl. +dj)=0 implies
d,=-d; (which is not possible since the d; are real and non-negative and d ;#* d;) or b=0 so t;=0. So if

UPU® =d I, ®d,I,®...®d, I, where ® denotes direct sum, then UQU* =T, ® T, ®...® T, where Q, = -0° is real

and =-0% is complex iff d;, = 0. For each real (). there exists a real-s-orthogonal matrix V; so that VTV? is direct sum of
K K p i g i

0 b
zero matrices and matrices of the form { 0 where b is real (Bellman, 1960). If QK = -Q}z is complex, there exists a

complex s-unitary matrix V, such that V,Q,V, O is a direct sum of matrices of the form [3] so that if V ZVI (‘BVZ D..® Vk
then VUPU®V?® = D and VUQ *U* = F the direct sum. Therefore ¥ UAU® V5 = D+ F this is the desired form. If 4 and

B are two con-s-normal matrices such that AB = BA then 4 and B can be simultaneously brought into the above secondary
normal form under the same U (with a generalization to a finite number) but not conversely; if 4 is con-s-normal , A4 is s-normal

in the usual sense, but not conversely; and if 4 is con-s-normal and AA is real, there is a real secondary orthogonal matrix which
gives the above form. Among properties of con-s-normal matrices not obtained but of subsequent use are the following:

o A is con-s-normal iff 4= HU = UH® where H is s-hermitian and U is s-unitary.
—S —S
. For if A= HU is a polar form of 4, then U HU =K is such that A=HU=UK and if AA = A°A, then
2
H> = (K S) and since this is an s-hermitian matrix with non-negative roots, # = K> and A =HU = UH® . The converse is

immediate. This same result may be seen as follows. If UAU $ = F is the s-normal form in Theorem 1, F' =DV =VD, where

. . . . , 2 Wh| @ b
D, is real secondary diagonal and V is a direct sum of 1s block of the form (a +b )

which are s-unitary.
-b a

—s —s — —5 — —
Therefore A=U DUU VU =U VUU SDrU which exhibits the polar form in another guise.
—s
. A is both s-normal and con-s-normal iff A=HU =UH =UH"® so H=H®=H so that H is real.
. If A=HU =UH" is con-s-normal, then UH is con-s-normal iff HU> = UZH, that is HU” is s-normal. For if UH

is con-s-normal, UH = H*U so that HU* = UHU = UzH; and if HU* = U2H, then
HUU = UH°U = UUH or H'U = UH .
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. A matrix A4 is con-s-normal, iff 4 can be written A = PW = WP where P = P® and W is s-unitary. If 4 is con-s-
—s — =5  — . — —s =5 = — —s =

normal, form the above 4 = U FU=U DrUUSVU =PW =U VUU D.U=WP where P=U DU s-

. symmetric and W =UVU is s-unitary. Conversely, if A=PW ZWP, AZS = PWWS ﬁs =ASA=P* WSF )

Note that if B is con-s-normal, and if B=PU where P=P° and U is s-unitary, it does not necessarily follow that
B= l_]P; but it possible to find on P; and U; such that B = PU, = UIP, holds. This may be seen as follows. If

B=PU is con-s-normal, Let ¥ bes-unitary such that PV ® = D is secondary diagonal, real and non negative, so that

VBV  =VPV VUV® = DW is con-s-normal from which DWWSB=WSDS DW or since D is real,
WD? = D*W and WD=DW since D is non-negative. Then B = (VSDV)(VSWV) =PU = (VSWV)(;SD;)

which is not necessarily equal to UP= (VSWV) (VS DV) However, if D=r1, ®rl,®..®rl,, r > r
for 1> J , then W=wow,>.0W,.

Since each W, is s-unitary, it is con-s-normal and there exist s-unitary X; so that X I.VV[X I.S =F; is in the real s-normal form of
Theorem 1 if X=X ®X,®..®X,, then XVBV’ X =XDWX®=DXWX°’=DF=FD  where
F=F®F,®..®F,.
So
B:(V X’ DX V)(V XSFX V)
—5 —S§ —5—s — = —s
- (V X FXV)(V X' DX V) —PU, =U\ P and
—s—5 — = =5 _ —

B =V X DXV=#V DV=Pand

U =VSXSFXV 2VWV =U.
Products of s-Normal Matrices

If 4, B and AB are s-normal matrices then BA is s-normal; a necessary and sufficient condition that the product AB, of two s-
normal matrices 4 and B be s-normal is that each commute with the s-hermitian polar matrix of the other. First a generalization of
this theorem is obtained here and then an analog for the con-s-normal case is developed.

Theorem 2

Let 4 be an s-normal matrix. Then AB and BA are s-normal iff (ZSA) B=B (A ZS ) and (ESB) A=A (B ES) . (In a sense,

the latter condition might be described as stating that each matrix is s-normal relative to the other).

Proof

_S p— p—
If AB and BA are s-normal, Let U be a unitary matrix such that UAU =D is secondary diagonal. d,d: > d ;d ;> 0fori <},

and let UBES =B, = (bi/')' From ABES ZS = ES ZSAB it follows that DBIEfD = ES DDB,; by equating secondary

= - < - = —s5—8§ —Ss—=s
diagonal elements it follows that Zdl. dibl-jbij =Zdj djbjl-bji for i=1,2...n. Similarly from BAA B = A B BA

J=1 J=1

—s5 —=5 - = i -
follows B,DDBi =DBi B, Dand Zdjdjbijbij :zdidibjibﬁ. Let i=I in each of these equations So that
= j=1

> d db,by=Y.d;db,by and > d, d;b,bi; =Y did bsb, fromwhich follows
j=1 =1

J=1 J=1
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S(didi-d,d,)b,b, =Y (d,d,~ddi)d, b,

J=1 J=1

o that S(ddi~d,d,)(b,b, +b,b,)=0.
j=l

Let did, =d,d,=..=d,d,>d, d
positive and is latter for j>/. So blj =0 and bjl =0 for j=l+l,l+2,...n. For i=2,.....[ in turn it follows that ;=0 and

1.1» then blejA—bjllZ =0 for j=[+1/4+2,..n since d, d_l—dj d_jis zero or
—s
b;=0. For i=1,2,....1 and for j=I+1,1+2...n. Let UAU =D= 1D, ®r,D, ®...@r Dy where the r, are real r; > r; for i <j and

—s
the D; are s-unitary Then by repeating the above process it follows that UBU =B, =C, ©® C, ®...® C; is conformable to D.

—s — p— _—

—s —s  ——=s
It follows from the given conditions that #D,C C; Dy, = C; (I;Di)(Dri)Ci and C D, Dr,.C: =1,D,C; C Dyr; or that

1

D,CC/ =C/CD,and D,CC, =C/C D, ifr,> 0.1f

—s —=s
r,=0, Dy is arbitrary insofar as D is concerned and so may be chosen so that D;C;Cs = Cs C Dy in which case D; may not be
—s =S —s =S
secondary diagonal. But whether or not this is done, it follows that DB, B1 = B1 B|D and that B, DD =D DB, so that

—s —s —s —s
A(BB ) = (B B)A and B(AA ) = (A A)B . The converse is immediate. It may be noted that if the roots of 4 are all

distinct in absolute value, B must be s-normal. The following further clarifies the situation.
Theorem 3

Let A = LW = WL be the polar form of the s-normal matrix 4. Then 4B and B4 are

—s
s-normal iff B = NW  where Nis s-normal and LN = NL.

Proof

—s
In the proof of the above theorem, let C,= HU,= UK, be polar forms of the C. Then U; HU,= K, so that
—s =S —s —s =S =5 _ =S —s =S
Ui Cl-CiU-:CiCl-OVUi CI.C;' =C; CI.U,-.Also,fromtheaboveDl.Cl.C,' =C; CI.DI..

1

—_s— —

LetR = D;U; then RC,C; =D;U;C,C; =D:C; C,U; =C,C; DiU; =C,C; R, where R, is s-unitary (if r, = 0, Ds may
be chosen =Us as described above). So RH>=H’R and since H, has positive or zero roots, RH,=HR and so
HR =R H.Then A=U DU=U DUU D,U= LW = WL and
B=UBU=U (C,®C,&..0C,)U
U (HU,® H,U, ®..® H,C,)U
- US(HIEfE@HﬁfD_Z@...@HSEED_S)U
= NWC™*®

—s —s —s —s —s
where N=U (H R OH,R: ®..@ H R )U (which is s-normal since the s-hermitian H; and s-unitary R; commute)

and WS 255 (51 @52 (‘B...(‘BBS )U. It is evident that LN = NL.
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—s —s
Conversely, if 4 = LW = WL and B=NW as described, then AB=WLNW which is obviously s-normal as is
—5

BA = NWSWL = NL. 1t is easy seen that B = NWS is s-normal iff NWS = WSN. if B= NWS = (HR)W is con-s-
normal; then B = H(RWS) = (RWS)HS = RHWS (form property (a)) so WSHS = HWS or WH=HW and

W(BES) =(§SB)W.

If 4 is s-normal and B is con-s-normal then AB is s-normal, it does not necessarily follow that B4 is s-normal though it can occur.

For example, if B=HU = UH" is

con-s-normal and if A =U then AB=U UH®and BA= HUU® = H are both s-normal. But the following is an example
in which 4B is s-normal but not B4. Let B = HU =UH® be

con-s-normal but not s-normal (i.e, H is not real by property (b)) and let H be non-singular. Let A= H "!is s-hermitian (So s-

normal) and not con-s-normal (since H ' is not real). Then AB=H 'HU =U is s-normal if B4 were also s-normal, then by the
above theorem (ZSA)B =B(AZS ) and (ESB) A= A(BES ) . But (ESB) A= (Hs )2 H" and 4 (BES )=(E_1 )(Hz)

2 —S

5 2
and if these were equal, (H S) = H?* would follow which means that H”* = (H S) (H ) so that H” real. But this is not

—s

possible for if H =VDV  where D is secondary diagonal with positive real elements (since H is non singular), then
—S — —S —

H?>=VD*V =V DV?® if H is real so that V°VD* = D*VV so VVD =DV*Vso VDV =VDV®=H is real

which contradicts the above assumption.
Theorem 4
If A and B are con-s-normal and if 4B is s-normal then BA is s-normal.

Proof

Let U be a s-unitary matrix such that UAU $=F is the s-normal from described in Theorem 1 and where
—s

FF =FF°=i’1,® 1} I, ®...®71, which is real s-diagonal with 7> >r>>...>r2>0 There 7°may be either the

a b

are squared. Assume that any
-b a

squares of secondary diagonal elements of F or they may arise when matrices of the form {

of the latter whose 1”1.2 are equal are arranged first in a given block followed by any secondary diagonal elements whose square is

2
the same 7" .

— —5 — —s
Let UBU = B, which is con-s-normal and then UAU SUBU =F B, is s-normal Let V' be the s-unitary matrix.

y_| V12 w172
i1/2 /2

Then the following matrix relation holds, independent of a and b:
a b|—=s a-bi 0
V Vo= ]
-b a 0 a+bi

—s —s
Let ' = F® F,®...@F, where the direct sum is conformable to that of F'/F given above (i.e, FF =711 )

1

and consider F{ = G, @G, D...® G, @ r.l where each G, is 2x2 as described above and / is an identity matrix of proper size.
Let W=V @V ®...@V @I be conformable to F;; define W; for each F; in like manner and letW = W, @W, ®.. @ W, .1If
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—s
r,=0, W, =1.Then WFW = D is complex secondary diagonal, where if d; is the i" secondary diagonal element

S

dl-giz d,, divi. Then W (UAUS)WSW(EBES)W (WFWS)(WBIWS) = DB, is s-normal for B, = WB, WS (or

B, =WS B, W). Since B,is con-s-normal, Blgf = BISZ_31 so that WSBszsgiW = WSstWWSEzW or that

o5 s SpS T s . ) 0
B, BsWW?® = WW?® B, Bx Now VIV is a matrix of the form {
1

I
O}' So that WW s is a direct sum of matrices of this form

and one’s.

Let B,=(b;)and consider(WWS )SBZEi (WWS) = stgz. Let BZE§ = (Cij), Bsz = (fg) c;and f; are

identifiable with the by, both matrices being
s-hermitian. Consider two cases:

e If d, 31 =dj d j for all j (where d; is the j™ secondary diagonal element of D), then D=KD, where D, is s-unitary
diagonal. Since WFBIWS = DB, =KD B,= D, (K32 ) is s-normal, then D, (DuB2 K )Du =B,D =WBF WS
is s-normal, asis B [ F'= EBESUA U soBAis s-normal.

o If d131 ¢dj3j for some J, let dlgl =d232... = dlgz for1 <1< n(sothat dlgz >d. dia ).

e Suppose E = Gl @ G2 @ 7’1] | Where I, is the 2x2 matrix (The general case will be seen to follow from this example).

I+1

S a—
From (WWS) B, B> (wws ) = Bf B> and the fact that W=V @V DI, it follows that C,;=f>5,C2:=f11, C33=f1s

Cu=f33 Css=fs5, Css=fss (and Elz = flz.EM = f,, etc) there equalities supply the following relation (where the

summation is over i=/ to n).
C,=Xb,b, =Sb,b, = fy;
Cp=%b,b_=Ybb =f;
Cyy = Xbyb, = bubis = fi;
C,, =Y b, bu=Yb.bs=fy;
C.. =Y b, bsi =Y b.bis = fi;
Cy =Y bbei =Y bbis = fi:
DB; is s-normal so that the following relations also hold:

dd, Ybb,=Yddbb ;
dd, Yb,b =¥ddb,b ;
dyd,,Ybyb, =¥d,d bib ;

d434a2b4,-1_74i ZZdl-di bi4l_)i4;
dSES 5Zb5il_)5i :zdid_ibiSEl-S;
dégéazbé,-géi :zdizibjél_)ié;

Since d,d1 = d,d2 on combining the first 2 relation in each of these sets,

@Z(Z%E}Qﬂ@@)z%ﬁ%Zhﬁﬂ+ZQ}%)22dﬁX%Eﬁbir)mmm

2702
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Z(dlgl-dl.gl_)(bilb_ﬂ+bi25i2):0 dlglzdjgj for j=1,2..6 but for j beyond 6, dlglzdjgj>0 or

bnb_n"‘ bizlz =0 or b, =0 and b, =0 for i=7,8....n similarly, b;;=0 and b;=0 for i>6 the third relation in each set give
b;s5=0 and b;s=0 for i>6.

On adding all 6 relation in the first set,

syl

ij

6 — 6 n — 6
$ b, 550b, = 3,
i=1 j=7 i,j=

i,j=1

+ii b,

and on canceling the first summations on each side,

Mo

S3bb, =3 ¥bb,.
i=1 j=7 i=7 v

y
1

~.
1l

But the right side is zero from the above, so the left side is 0 and so b;=0 for i=/,2...6 and j>6. From this it is evident that this
procedure may be repeated and that if D=r,D; @D r,D, D ... @ r,D, Where the D; are s-unitary and the 7; non—negative real, as

above, then B,=C, ® C, @ ... @ C, Conformable to D then #,D,C; is s—normal so EI.S (DiCl.rl. )Dl. = Cr.D, is s-normal so B,D is
— —=
s-normal. So B,F and so UBU UAU® and BA.

Theorem 5

—s —s —s =S
If A and B are con-s-normal then 4B is s-normal iff A AB=BAA and ABB = B BA (ie, iff each is s-normal relative to the
other).

Proof

If AB is s-normal, from the above BSDB2 = BzDBS so that FSFB1 = BIFFS or ZSAB = BAZS.
Similarly DB, is s-normal, DB, B, D =B, DDB, so DB,B, = B.B,D or FB,B, =B, BF or ABB =B BA. the

converse is directly verifiable.

Theorem 6

)
Let 4 and B be con-s-normal, if AB is s-normal, then A=LW=WL® (with L s-hermitian and W s-unitary) and B = NW" . Where
Nis s-normal and L' N = NL® ; and conversely.

Proof
—s —S —S
As above, let UAU S—F=Ww"DW =w D ww D, ,w where D, and D, are the

— —g —s —s
s-hermitian and s-unitary polar matrices of D) and UBU =B =W B,W =W (C1 D..0C; ) W. As in the proof of Theorem

—s =S —5 —§ —=s5_—S — —s
3 if follows that for all i, DiCiC,- = Cl. CD, and U, Cl.C;g = CfCiUi with U; as defined there, so that when R, = D; U

(where D, here, =r;D; @ 1D, ® ... @ Dy as earlier) thenC, = HU, = HZE:?B, with HR, =R H,.

A= (ESDrU)(l_]SV_VSDuWEJ = LX
Then since, WD,=D,W, UAU® =W "D wiW D, w=D, (WSDuwj and
(US ") WUJ(USDrU) = XI*

S =SS py
with L =U D U s-hermitianand X =U w D wU s-unitary.
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Also, UBU" =w’ (Hﬁfﬁl ®H,R,D,®..©OHR,D, jw= NY

—=s( . =S = =S . =S (AT = _ ,
Where N, = w (HlR1 ®H,R, @...@HkRkjw is s-normal and Y=w (DI@D2 @...@Dk)w is s-unitary; then
B=USMYU=(USM5)(USYU)=N7(S.

SN TT S s Sws -

Where N =U"N,U iss-normaland X =U"YU =U"W D wU. Also
I*N = NI since DN, =N,D,,D,N =N D, so (I_JZUS)(L_/NUS):(I_JNUS)(L_/ZUS)SO ISN = NI .
The converse is immediate.

Products of Con-s-Normal Matrices

It is possible if A is s-normal and B con-s-normal that AB is con-s-normal. For example, any con-s-normal matrix C=HU=UH" is
such a product with 4=H and B=U. Or if C=HU=UH" and A=H, then AC=H’U=HUH*=U(H’)’ is con-s-normal. The following
theorems clarify this matter.
Theorem 7

If 4 is s-normal and B is con-s-normal then 4B is con-s-normal iff

ABB’ =BB’ A and BAA® = A% AB(orBAA® = A’ 4B).

—s —s
(If one were to define N is s-normal with respect to M” to mean NN M = M N N and Q is con-s-normal with respect to P to

_S —_—
mean POQ = QS QP the above theorem would say that if 4 is s-normal and B is con-s-normal then AB is con-s-normal iff

(con-s-normal) B is s-normal with respect to 4 and (s-normal) 4 is con-s-normal with respect to B).

Proof

If the latter condition hold, then: (AB)(4B)’ = ABB' 4’ =BB A4’ and (AB)'(4B)=B°A"A B=B"BAA
which are equal.
Conversely, let AB be con-s-normal and let UAU" =D =d.I, ®d,I, ®...®d, I, where ddi> d dj,i>j.
Let UB'U® =B, =(bjj),
if (4B)(4B) = ABB' 4" = 4B°B 4’ =(4B)’(4B)
= B°A°AB=B°AA°B,
ven (040 |(0B'UTET VAT )= (vB'0*)(TA° Ta'w*) 05T
So that DB, Ef D = BIBDZ_BT.
Equating secondary diagonal elements on each side of this relation, we get Z ddbby = >.ddbby ,i=12..n
=

or
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Zb.Z,-j :ijil_)ji for i = 1,2,...n on adding the first / of these equation and canceling, bl.j =0 for i=/+1,/+2..nand
j=1 j=1

j=1,2,...,l. In this manner if D= D ®rD, @...(‘Br;thith r>r,, and D; s-unitary, then B =C @CZ@...@C[
conformable to D.
‘ VA 248 _ S 2 Sy S s S
Since D, Div,Ci =1 C’ =C'1;7=C’r,D,Dir,foralli, DD B; = B/ DD andso
=5 —§ —§ = =5 (— o —§— —5 = =5 s ™= &= =S
UDDUU B'U=U B'UU'DD U or AA B=BA"Aor A AB=BA’ A or A AB = BAA .

—S

Also, D(Blz_afD ):BIBDZ_Sf :BDEsz(BBI Ef)so that C.C, (rDi) = (D) CC fori= 1.2....(if r, = 0, this s
—5 —Ss —s_ —S$
still true and D, may be chosen to be identity matrix). Therefore 8,81 D =D B, Bi and
=S —S=8 _ —§—8§ o c—— —§ g=—=8 =8 = = =
UBU'UBU UAU =UA U UBUUBU so BBBA =A B°B or AB°B=B’BA.
Corollary 1

Let 4 be s-normal, B con-s-normal; if AB is con-s-normal, then BA is con-s-normal, and conversely.

Proof

—s
From the above, UAU UBU?® = DBIS is con-s-normal, and if D = D D , D, real and D, s-unitary, then since

D, = ES,HM(DBIS)EZ DrBlsﬁu = BISDrﬁu = BlsB is con-s-normal, asare U BU® UAUS andBA .

Reversing the steps proves the converse.
_ — —s
If 4 is s-normal and B is con-s-normal, B A is con-s-normal iff 4B is con-s-normal, iff (BS B)A = A(BB ) and

(AS Z)E = E(AZS) . Therefore if 4 is s-normal B is

—S

con-s-normal BA is con-s-normal iff (BSE)Z = Z(BES) and (A A)E = E(ZAS)that is replace 4 by A in the

—s — —s —s \—=
proceeding or (B B) A= A(BBS )= A(B B) and (A A)B = B(AAS ) , thus exhibiting the fact that when 4B is con-s-
normal, BA is not necessarily so.

Theorem 8

If A=LW=WLis s-normal and B = KV = VK?® is con-s-normal (where L and K are s-hermitian and W and V are s-
unitary) then AB is con-s-normal iff LK = KL, LV = VL®and WK = KW .

Proof

If the three relations in the theorem hold, then AB = LWKV = LKWV | and
AB = WLKV = WKLV =WKVL® =WVKSI[® = WV(LK )S is con-s-normal since LK is s-hermitian and WV is s-

unitary.
Conversely, Let 4 = ﬁsDU = (ESDVU)(ﬁsDMU) = LW and

=S ¢ —s —s_ — s
B :(U B, U) = (U KIU)(U VIU) = KV =VK
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where K, and V]| are s-hermitian and s-unitary and direct sums conformable to BIS and D. A direct check shows that
—S$ —S —s —s
LK =KL and LV=VL’aso WK=U DKU=U KDU =KW since D,B B = BBiD, implies

DMK1 = KIDM . A sufficient condition for the simultaneous reduction of 4 and B is given by the following:

Theorem 9

—s
If A is s-normal, B is con-s-normal and AB = BA®, then WAW = D and WB*W = F, the s-normal form of Theorem 1,

where W is an s-unitary matrix; also AB is con-s-normal.

Proof

Let UAES =D secondary diagonal and UBU® = B, which is con-s-normal. Then AB = BA®  implies
_S —_—

DB, =UAU UBU®=UBU*UA’U® = B,D’ =B,D.

Let D =Cl, ®CI, ®... 0 Cy 1. Where the C;are complex and C; # C; for i # jand B, = C,®C, ®...OCy let V]

be s-unitary such that ¥,C,V,® = F the real s-normal form of Theorem 1, and let V' =V, ®V, ®...®V, .

—s5—s S5 .
Then VUAU V=D, VUBU"V"® =F =a direct sum of the F; .

Also, AB = BA® implies BSAS= AB® and so
ABB'A = AB°BA = B°A°AB =(4B)'(4B).

It is also possible for the product of two s-normal matrices 4 and B to be con-s-normal if Q = HU = UH §is con-s-normal and
if A=U and B = H thisis so orif KV = VK?® is con-s-normal and if A=UK=KU is s-normal with K s-hermitian and ¥ and
U s-unitary, for B =V ,AB = (UK)V =K (UV) = (UV)KS con-s-normal. But if in the first example, U’H is not s-

normal then HU 1is not con-s-normal so that B4 is not necessarily con-s-normal though 4B is. When 4 alone is s-normal an
analog of Theorem 2 can be obtained which states the following: if 4 is s-normal, then 4B and AB° are con-s-normal iff

—s — —s — — —s —
ABB = BSBA, BB A =AB°B and BAA = A° AB. (The proof is not included here because of its similarity to that
above) when B is con-s-normal, two of these conditions merge into one in Theorem 7. It is possible for the product of two con-s-
normal matrices to be con-s-normal but no such simple analogous necessary and sufficient conditions as exhibited above are

available. This may be seen as follows two non-real complex commutative matrices P =P?% and 0= QS can form a con-s-
normal (and non-real s-symmetric) matrix PQ which need not be

- - 2i 0
s-normal. Then two s-symmetric matrices X :{ . j| Y:{ 0 2 j| are such that XY=Z is real, s-normal and con-s-normal
1

1 -1
(s-symmetric). Finally if U and 7 are two complex s-unitary matrices of the same order, they can be chosen so UV is non-real

that is complex, s-normal and con-s-normal. If A=PD X DU and B=Q@Y DV AB = PO® XY UV where 4

and B are con-s-normal as in AB.

— —s —s
(s-symmetric). A simple inspection of these matrices shows that relations on the order of (B B ) A=A (B B )Z(B B )A and

—\ = —s\—= —=( =S
(ASA)B = (AA )B =B (AA ) do not necessarily hold; these are sufficient, however, to guarantee that AB is con-s-
normal (as direct verification from the definition).
REFERENCES
Bellman, R. 1960. “Introduction to Matrix Analysis.” McGraw-Hill, New York

Krishnamoorthy, S. and Raja, R. 2011. “On Con-s-normal matrices.” International J. of Math. Sci. and Engg. Appls., Vol.5 (II),
131-139.



7957 Asian Journal of Science and Technology, Vol. 09, Issue, 04, pp.7947-7957, April, 2018

Stander, J. and Wiegmann, N. 1960. “Canonical Forms for Certain Matrices under Unitary Congruence.” Can. J. Math., 12 427-
445.

Wiegmann, N. 1948. “Normal Products of Matrices.” Duke Math. Journal, 15

633-638.

steskeskoskoskookok



