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INTRODUCTION

Fluid mechanics is the branch of science which deals with the behavior of the fluids (liquids or gases) at rest as well as in motion.
Thus, this branch of science deals with the static, kinematics and dynamics aspects of fluids (Bansal, 2005). The inadequacy of the
classical Navier-Stokes theory for describing rheological complex fluids has led to the development of several theories of non-
Newtonian fluids. Non-Newtonian fluid flows play important role in several industrial manufacturing processes. Due to the
prominent applications in the modern technology and industries, many researchers made attempt to study different non-Newtonian
fluid flow problems (Devakar, 2014). The study of flows of non-Newtonian fluids with slip boundary condition has gained
considerable attention in the recent past. Though many flow problems concerning Newtonian and several non-Newtonian fluids
have been solved under the no-slip condition, the fluid slippage might occur at the solid boundary (Ashmawy, 2012; Thompson
and Troian, 1997). Several investigations indicate the existence of slip at the solid boundary (Neill et al., 1986). As a matter of
fact(Navier, 1823) proposed a general boundary condition that permits the possibility of fluid slip at a solid boundary. This
boundary condition assumes that the tangential velocity of the fluid relative to the solid at a point on its surface is proportional to
the tangential stress acting at that point.

Due to its vast applications in engineering and industry, pressure driven flow or the Poiseuille flow has attracted attention of
various researchers. Although pressure driven flows are unidirectional and have been studied earlier for Newtonian and some
non-Newtonian fluids, they still attract special attention in a number of emerging problems (Tang, 2012). (Chen and Zhu, 2008)
obtained the analytical solution of Couette-Poiseuille flow of Bingham fluids between two porous parallel plates with slip
conditions. (Song and Chen, 2008) investigated the Poiseuille flow of simple fluids in cylindrical nanochannels. (Yang and Zhu,
2012) have analyzed the squeeze flow of Bingham fluid in the small gap between parallel disks with the Navier slip condition.
(Ferras et al., 2012) presented analytical solutions of both Newtonian and inelastic non-Newtonian fluids with slip boundary
conditions for Couette and Poiseuille flows. (Hron et al.,2008) established closed form analytical solution for the flows of
incompressible non-Newtonian fluids with Navier’s slip conditions at the boundary. (Devakar et al., 2014) established the closed
form analytical solutions of steady fully developed flows of couple stress fluid between two concentric cylinders, generated due to
the constant pressure gradient, using the slip boundaryconditions. As far as we know, an analytical solution of Poiseuille flow of
an Incompressible Fluid between two upright (or vertical) concentric cylinders subject to slip boundary conditions has been not
established.
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The main objective of this study is to establish analytical solutions for Poiseuille flows of an incompressible fluid between two
vertical concentric circular cylinders governed by a Navier-Stokes equation by utilizing slip boundary condition and toexaminethe
effect of slip length and the radius of the gap between two cylinders on steady state velocity and volume flow rate distribution of
fluid. The slip boundary conditions are applied at the boundaries of the inner and outer cylinders. In this paper, first analytical
solution of the Poiseuille flow of an incompressible fluid between vertical concentric circular cylinders governed by a Navier-
Stokes equation is established by applying appropriate assumptions subject to slip boundary conditions. Then the effect of slip
length and the radius between the cylinders on the volume flow rate and velocity profile has been analyzed. Three cases have been
discussed: In the first case it is assumed that the fluid slip at the surface of the two cylinders, in the second case the fluid does not
slip (no-slip) at the surface of the inner cylinder and the fluid slip at the surface of the outer cylinder, and in the last case it is
assumed that the fluid slip at the surface of the inner cylinder surfaces and the fluid does not slip (no-slip) at the surface of the
outer cylinder. Ineachcase, it is assumed that both the inner and outer cylinders are at rest and the flow is due to the constant
pressure gradient.

Governing equations and simplifying assumptions

Simplifying assumptions: Analytical solutions are a valuable tool to understand the complexity of fluid dynamics. But due to the
great complexity of the full compressible Navier Stoke equations, no known analytical solution exists. Hence, it is necessary to
simplify the equations either by making assumptions about the fluid, about the flow or about the geometry of the problem in order
to obtain analytical solutions. In view of this, we consider steady, incompressible, fully developed laminar and viscous flow
called Poiseuille flow of a Newtonian fluid of constant density p and viscosity £/ contained between two straight up concentric

circular cylinders driven by constant pressure gradient as shown in Fig.1. The radii of the inner and outer cylinders are
respectively, R, and R, and the cylinders are assumed to be at rest. It is also assumed that the flow is parallel to the wall with

slip on boundary conditiong =k < k, < k,; R, <r < R,; R -R,

0 LK<2.

Because of the geometry, Poiseuille flow is analyzed using cylindrical polar coordinates (7, €, z) with origin on the center-line of

the cylinder entrance and z-direction aligned with the centerline.For this work we made the following realistic (or reasonable)
simplifying assumptions:

1. Since the flow is parallel to the walls there is only one non-zero velocity component- that in the direction of flow, V., .Thus,

V.=V, = 0, where V, and ) are, respectively, theradial (or tangential) and angular velocity of the fluid.
2. As the flow is steady the velocity of the fluid at a particular fixed pointdoes not change with time, subsequently

a(Vr):a(Ve): o(v,) 8(,0):

ot ot or ot

3. Since the flows studied in this work are fully developedPoissulleflow, the velocity profile does not change in the

a(Vr) _ ) _ o(v,)
0z 0z 0z

4. As the flow is axisymmetric flow the cylindrical velocity components V.-V, and y, are independent of the angular

variable 0. Thus a(V’) = G(Vg) = G(VZ) =0

00 00
5. Gravity actsvertically down wards. Therefore §, = g, £, = &y = 0,

=0

fluid flow direction. Hence,

Governing equations: This work concerns steady, viscous, fully developed incompressible fluids with constant density which are
governed by the continuity equation

op
—+V. =0, 1
Py (pv) (1)

and the momentum equation

ou_

P

pg—Vp+u\'v @)

In eqn.(1) and eqn.(2) v is the velocity vector of the fluid , p is the pressure, pis the fluid density , f¢ is viscosity and g is the
gravity.
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In cylindrical polar coordinates eqn. (1) can be written as

ap 106 18 8
- +—— +— =0 3
P (Prv,) P e(pvg) . (py.) ©)

In view of the constant-density assumption, eqn. (1) simplifies to Eqn. (4) and eqn. (3) simplifies to eqn. (5)

Vv=0, “)
10 10 0
p - Vr+_ v0+ VZ :O (5)
ror roe oz
With the stated assumptions of a Newtonian fluid with constant density and viscosityeqn. (6) gives 7,6 and z momentum
balances:
o(v,) ov, vyov, v,2  ov op 8(1 d j v, 108, &% 2dv
— Lty —L 2L 4y L= ——tp|—| ——0V)) |-+ —+—L -2
e P e o o R ) A
o(vy)  ov, v, v, vy V.V, 1 op 0 (1 0 j vy 10%, ovy® 2ov
+v, —4+——4+V —+—"— |=pg, ———+U| —| —(1V, B e S S
o Vet e e ) et e e ) et e e e
o(v,) ov, v,ov v ap 16(61/2) 10, ov}
L4y, —E4 L4y, —2 |=pg. ——+pu|——|r +—>—2+—= (6)
Pl7a " T e ZaJpgz oz Vrarar ) R a0 a2
RESULTS AND DISCUSSION

To analyze the steady state velocity and volume flow rate distribution, we start from the continuity equation
10 0
—+t—=—(rv)+——=py ) +—(py)=0
ror TV g Ve T 5 Vs

Which, for constant density and V.=V, = 0 reduced to:

0
VZ - O
0z
verifying that V., is independent of distance from the inlet, and that the velocity profile V.= VZ(V) and p = p(z) appears the

(7

same for all values of z.

Velocity profile

Exit

Fig. 1. Geometry for Poiseuille flow between two concentric cylinders
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Now we are going to use the momentum equation to solve for y, - From the Z momentum balance

o(v,) ov, v,ov v o (1o av,) 18, ov}
p +v, —F+——F+v,—~ |=pg. —— +tU|——|T tS——t+t
ot oo r 09 oz 0z ror\ or r° 0o oz

With v =15 =0 Oy, o 0(vy) . _ .
ithy =y 0= (from assumption 1), P = 0 (from equation 7), EY; = 0 (assumption 4) and g, = g (assumption 5),
z

this momentum balance

li(raVzJ+l&+avzz =—(pg. +p) @®)
H ror\ or rr 00 077 PE. TP

In which total derivatives are used because v, depends only on 1. Two successive integration of equation (8), yields

(P+pg.)

v, =— ¥ +Alnr+B )
4p

In order to evaluate the two integration constants A and B we consider three different cases to apply boundary conditions at the
walls of the cylinders.
Steady state velocity analysis in the first case

Suppose that a fluid slip at the surface of the two cylinders and both cylinders arefixed, then thetwo constants can be evaluated by
applying boundary condition of non-zero velocity at the surface of the two cylinders,

r=R :v,=U
(10)
r=R,:v,=U
Eqn. (9) and eqn. (10) leading to:
P+ R’ -R’ P+pg )R’ (P+ R’ -R’
A:( pg. )( 12? 1),B=U+( pg.)R”  (P+pg.)( ;{ l)lan (11)
4pln—= A 4pln—=
R, R,
Eqn. (9) and eqn. (11) gives the final solution for velocity distribution;
R} ~R*)In—- )
P+ ( > V)R
Vz:( pg) 1 (rz—Rlz) A P (12)
du ln& &

1

,
Where U = k(1— (E)Z) , is velocity specified, k is slip length or friction coefficient.
1

This solution is visualized by figure as follows by utilizing MATLAB.

Figure (2) shows that the graph of velocity profile is parabolic. This indicates thatas 7 —> Rl ,and7 —> Rza 0<k <2, the fluid

velocity decreases and it is greatest at the centerline than near to slip boundaries. The graph also indicates as the gap between
concentric cylinders decreases the fluid velocity decreases and the more close the fluid slips at the boundarythe less its velocity is
affected by the slip length of boundary condition.
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Fig. 2. Velocity profiles
Volume flow rate analysis in the first case

The flow rate through concentric circular cylinders or annulus of internal radius » and external radius T +dris
dQ =2V, rrdr (13)

From eqn. (12) and eqn. (13), we get the volume flow rate,

RZ
0= IVZ 2rrdr

B
2z(p+pg. (R —R*)| & Ry By Ry 2
_2x(prpe (R K [an——|rdr—[rdr+R? [rdr]+ [k(-| = | )27rdr
4“11’172 R R2 B R R Rl
1
Rz _Rz R2 —R2 2 _p2
[ AR B (ppe)| pr g (BT R k(R R (14)

8 i In & Rz2

1

Which is sketched bellow using MATLAB in Figure 3.
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Fig. 3. volume flow rate profiles
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From Fig.3we can observe that the volume flow rate is affected by both the distance between the cylinders r and slip length k. As
the values of ¥ between concentric cylinders approaches either to the radius of the inner cylinder or the radius of the outer cylinder
volume flow rate of fluid decreases. It can also be seen from the figure thatthe volume flow rate is maximum at the centerline of
fluid than near to both slip boundary condition. Moreover the figure illustrates as the gap between the cylinders increases the
effect of friction coefficient on volume flow rate decreases.

Steady state velocity analysis in the second case
Suppose that there is no fluid slip (no-slip) at the surface of the inner cylinder and fluid slip at the surface of the outer cylinder and

both cylinders are fixed. Thus the two constants may be evaluated by applying zero velocity at the surface of the inner cylinder
and non-zero velocity at the surface of outer cylinder,

{r:R1 v, =0

15
r=R,:v,=U >

Eqn. (12) and eqn. (15) gives

Udp+(p+ R’ —-R’ + R’ + R’ -R’
AUttt ® pgz;( ) —RY) ,B:U_Ulr;aR”(p pg.)R,” (p pgz)(;Q Dink,.
4”11’172 In=—2 4” 4“11172

Rl Rl 1

Substituting these values for constants of integration into eqn. (12) yields the final expression for the velocity profile:

bipe.) (R, —Rﬁ)lnRL 1nR§

2 r
(" —R7)| + k(l—(—)z)] 25 6)

ap In—2% R, In—2

1 1

-

r
WhereU = k(1— (F)z) ,is a constant (or velocity specified) andk is slip length or friction coefficient, which is sketched in fig.

2
4,

Velocity

-2.5 L L
0.5 1 1.5 2 2.5 3

r

Fig. 4. Velocity profiles

From fig. 4 we observed that as? —> Rl,l” - Rz ,0<k <2 from the centerline of the parallel flow the velocity of the fluid

decreases. This illustrates that the velocity of the fluid is affected by both friction coefficient k and the length of the gap between a
vertically held concentric cylinders. The graphs also indicate that decreasing a gap between concentric cylinders has a decreasing
effect on a fluid velocity. In addition to this it shows that the more close the fluidslip and no-slip boundary condition at the surface
of concentric cylinder the less its velocity is affected by the slip length of boundary condition.
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Volume flow rate analysis in the second case

The total volume flow rate distribution for this case can be evaluated by using eqn. (13) and eqn. (16) and they yields

R} —R2)lnL In’
R, n ( 2 1 R
0= (p+pe.) (1 R )| +K (1= (L)) — - |2ardr
R ap In—=% R, In—=%
Rl Rl
2 2
:((”)(Rz ’ _Rlz)j ((p+pg2)j (R2 _Rl )+R 2 +R2 + k3R22 _Rlz) +KR227[ (18)
2 1
8 H ln& R’ ln& 2
R >R

Which is sketched in Figure (5).
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Fig. 5. Volume flow rate of profiles

From Figure 5 it can be observed that the graph increases as the values of 7 between concentric cylinders increases to midpoint of
the gap and the graph decreases when the value of r is either approaches to R; or R,. This indicates the volume flow rate of the
fluid is high when the parallel flow of fluid is at the centerline than near to no-slip and slip boundary surfaces of concentric
cylinders. From the figure we can also observe that the friction coefficient affects negatively the volume flow rate of the fluid.

Steady state velocity analysis in the second case

In this case let as evaluate the two constants of integration by applying the boundary condition of non-zero velocity at the inner
cylinder and the zero velocity at the outer cylinder;

=R :v, =U
{V 1Yy (19)

r=R,:v, =0
Eqn. (12) and eqn. (19) gives

a-ZWh-rpe )RS -RD - (preg )R Udn—(p+pg. )R —RY)

4u ln& 4 4n ln§2

1 1

In R,

Substituting these values of the constants into equation (12), yields the final expression for the velocity profile:
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r r
(R,” =R’)In— , ,.In—
pP+Pg. KR~ —r R
VZ — ( J ) IR 1 —(I"Z _RIZ ) _ ( ]1{2 ) Rl (20)
Rl Rl

"
WhereU = k(1- (—)2) , s a constant or velocity specified and k is slip length or friction coefficient, which is sketched in

1
Figure (6).

Velocity
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Fig. 6. Velocity profiles

Figure 6shows the velocity of the fluid flowing through the concentric cylinder decreases as 7 —)R1 and r —)R2 where

0 <k <2 and the maximum value of the velocity in the situation occurs at the centerline of the parallel flow.This in turn implies
the velocity of the fluid decreases near to slip boundary condition and no-slip boundary condition of the inner and outer surface of
concentric cylinders. The figure also indicates that, decreasing the gap between concentric cylinders has decreases effect on fluid
velocity.

Volume flow rate analysis in the third case

From eqn. (13) and eqn. (20), we can obtain a total volume flow rate distribution between the two fixed concentric circular
cylinders;

R} —-R*)In— In—

_Rz (P"’sz) ( 2 1) Rl_ N _K(Rlz—rz) Rl
0= (r R, ) 5 2rrdr

R apn ln& R, ln&

R, R,

_ (R’ -R)| (p+pe.) . +R2_(R22 -R?) LR =R | KR 2

2 1 R R 2

8 H In—2% R>In—2

R R

1 1

Which is sketched in Figure 7.
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Figure 7 shows that for all values of k €[0, 2], the volume flow rate of a fluid decreases when the value of » decreases from the

middle value from R, f0 R, or when the values of 7 increases from the middle value of R, and R, to R, where R <R,
.The figure also illustrates that the volume flow rate of a fluid is maximum when r is at near to the center line of the parallel flow

of fluid that is near to the mid-point of R, and R, or when r €[1,2].

Conclusion

In this paper three distinct cases have been considered to establish analytical solution of a Poiseuille flow of incompressible fluid
between two vertically held fixed concentric cylinders subject to slip boundary conditions. In all cases, the governing equations
give rise to the Navier-Stokes differential equations and they are solved analytically based on realistic simplifying assumptions
and boundary conditions. In each case the velocity and volume flow rate of the fluid have been analyzed by considering different
slip conditions and slip length. Moreover, the effect of the distance between the two cylinders on flow velocity and volume flow
rate of the fluid has been discussed. The result illustrates that:

» The velocity field involves only one non- zero components, V., and its magnitude is a function of the axial coordinate and

depends on the slip length k and the distance between the two concentric cylinders.

» The flow velocity of the fluid is high at the centerline of the parallel flow when compared to the velocity of fluid near slip
boundary condition and no- slip boundary or near to the surface of concentric cylinders.

» Decreasing slip length of boundary condition in motion of parallel flow of fluid has a decreasing effect on the velocity.

» The slip and no-slip boundary condition have an effect on volume flow rate of the fluid in the concentric circular cylinders.
This implies the volume flow rate of the fluid changes depending on the value of 7 and the value of slip length k.

Generally, as it has been discussed the result of this work shows both flow velocityand volume flow rate depends on slip length
and the radius between the two concentric cylinders.
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