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1. INTRODUCTION

We consider X as a topological space (see[4] &[5]), €2y as a sheaf of (differential) Ax-modules over X, 0y as a derivative map
like the Ky —sheaf morphism which is also Ky —linear, where K = (R = (R, #,X) and C = (C,¢, X)) is respectively the sheaf
of real numbers and the sheaf of complex numbers and Ay the sheaf of unital K —algebras over X (see[10], [11], [12] &[13]).
The triplet

(Ax ,0x.Q,) (1.1)
which satisfies, for any open U in X, the Leibniz (product) rule [6]
6U(a.W) = a. au(W) + w. au(a) (1.2)
with a,w € Ay , and dy: Ay — Qp is continuous. We set
dTy = (Ay, 0x, Q) (1.3)

and say that dT is a differential triad relative to (X, Ay) . If dTiy = (Ax, 0ix, Qix) and dTjx = (c/ljx, djx, ij) are two
differential triads respectively, relative to (X, A;yx) and (X , clqjx), then a morphism of differential triads between dT;y and dTjx
(or simply from dT;x to dTjy ) is the following triplet

) ) (A2 0% hg.,) ) (1.4)
where h;’lx € Homyy, (c/liX,c/le) and hgx € Homppoay (QiX, ij) are continuous maps and dy is such that for any open U in
X we have

ay/ (ha,) = ha, (1.5)

We design by Algy the category of sheaves of unital IKy-algebras over X and DMody the category of sheaves of

(differential) modules over X, where Ky = (Ry or Cyx) , with Ry = (R, 7, X) the sheaf of real numbers and Cy = (C, ¢, X) the
sheaf of complex numbers over X (see[8]&[9]).
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The set of differentials over X € TOP is represented by Diffy , it is also considered as a category of differential morphisms. Let
us consider the triplet (see[25])

(Algx, Dif fy, DMody) (1.6)
such that, for any A;y € Ob(Algy) , there exist 0;y € Diffy and Q;x € Ob(DMody) satisfying the Leibniz (product) rule
0y (a;.a'y) = a;. 0y (a'y) + a'i. Oy (a;) (1.7)

with a;,a’; € A;y = A;(U), where 0;y: Ay = Qi = Q;(U) is continuous and K;-linear. The differential triad dTy over
(X, Ay) is given by

dTy = (Ax, 0x, Qx) (1.8)
The application Fy: Algy — DMody is a functor defined, for any A;x, Ajx € Ob(Algyx) and hzx € HZX as follows

Fll4,, = iy and de|Hz = 07 (1.9)
X

where HZX = HOmAng(c/qix,c/qjx) and a;'j: Hi‘!jx - H}{X is a continuous map , with H;{X = HomDModX(QiX:QjX)- The symbol
« | ” designs the restriction, and we say in this case that the triplets

(Aix 00, Qx) and  (H) 0y, Hg (1.10)

are respectively differential triads in Ob(Alg Xy F% Xy DMod) and Mor(Alg Xy F% xyx DMod). The functor given by
F%:Algy - DMody is a differential triad functor over X. We have the following commutative diagram:

diy
Ay - Qiy
lim { L lim
xeU xeU
Aix P Qix
For this regard, we have the following inductive limit
lim o 0jy = lim o0 0y (1.11)
xeU xeU

The differential triads dT;y and their morphisms de;j with i,j = 1,2,3,... represent the category which is denoted by Dif fTy and
called the category of differential triads over X (see[14]).

The same notions can be generalized over categories Openy and TOP and we attend to construct the category of differential triads
over Openy and TOP, respectively denoted, by

DiffTopeny and DiffTrop = Dif fT

with DiffTy S DiffTopen, S DIiffT.
A complex of free left (resp. right) A-modules is a sequence of left (resp. right) the following A-homomorphisms (see[6])
-1 gt i+1
Q= — 0 5ot — (1.12)
between left (resp. right) A-modules QF and Q*! which satisfy, for any open U in X,
Imd='(U) € Ker d'(U),i.e.,do di* =0y (1.13)
VieZ

Regarding the above composition (1.13), where by definition

d®°=09,d'=d (1.14)
forany i > 1
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where the symbol d designs the differential A-homomorphism.
If we specify the order of the set () of differential forms (sheaf of differential A-modules) by setting

QA=A and Q= (QY) = AIQ! (1.15)
where A = A4 is the exterior (the skew symmetric homological tensor ) product, for any i = 1. We have, more explicitly

1 —

=A N QAQ!

2. The quadratic differential triads

Let dTy be a differential triad. If (cflx, qﬂx) and (QX qQX) are two Ay -quadratic spaces, with g4, : Ay > Ay and qq, : Qx -
Qy two quadratic forms, then the triplet ((c/l % da x)' Oy, (QX doy )) is an Ax-quadratic differential triad iff the following relation

is verified
day © Oy = qay (2.1)

According to the above expression, it follows that q 4, represents a differential quadratic form. The quadratic differential triad
relative to (X, Ax) is determined as

qdTx = ((Ax , quy ) 9x , (Qx, qoy ) (2.2)

Here qdTix and qdTjx are two quadratic differential triads relative to (X, A;x) and (X , c/le), respectively , with 4, j = 1,2, ...A
morphism of quadratic differential triads from qdT;x into qdTjx is the triplet

(h). 04, ha ) (2.3)
where hzx € HZX = Homg, (c/qix, clqjx) and hgx € H;{X = Homy, (Qix, Q]-X) and moreover the following relation
9y (hay) = ha, (2:4)

satisfies the Leibniz (product) rule, as given in (1.7). We observe that the triplet (H i < a}'g’ , H;{X) represents the differential triad.
The categories of differential triads and quadratic differential triads over X are denoted respectively by

DiffTx, ODiffTx (25)
(D,) In the context of sheaves over categories, we intend to replace the topological space X, respectively, by the categories
Openy and TOP so that we determine, respectively, the categories of quadratic differential triads over Openy and TOP, denoted

by
ODif fTopeny, ODif fTrop = ODIffT (2.6)
(D,) Is it possible to express a functor Q: Dif fT — QDiffT as follows
Q(A,8,9) = (A, 0.),0,(Q,q0)) and Q(h},0Y,h]) = (h},09,h)  (27)

where q 4 and q satisfy the composition condition
qo o0 =qyu.

(D3) Our main concern is to find out what kind of pairs (g4, qq) that can satisfy the above expression qq 0 0 = q 4 ?
Knowing that from a given pair (A, ), we can define several pairs of quadratic spaces , i.e., (c/l, qfﬂ), (Q, qh) , Where i =
1,2,3,...

To answer the above concern, we need to fix a (differential) A -quadratic form gq: ) = A such that
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Jda= 44 2.8)

where the symbol [ ¢o designs the “integral” of the differential form gy, , with g, the primitive function of ¢. In other terms,
the primitive function is

(D,) Designing by Ay the underlying of K in A and then obtain an equivalence relation, ~, defined in Endg(A) =
Homy(A,A) as follows
i

qh ~q,), = q4 - ql=k with k€ Ag (2.10)

(Ds) Referring to (Ds), from (differential) A -quadratic form gq: Q — A , we determine a subcategory QDiffT of QDiffT
whose objects ((c/l, 4d.4),d,(Q, qﬂ)) verify at the same time, expressions (2.8), (2.9) and the following expression

400 = 4u (2.11)

Let us design by Q 4 and @y, the set of differential quadratic forms §q: Q — cA,... and the set of quadratic forms § 4 : A — A,
..., respectively. By setting

J:00—=0Qu , Go— [do= Qu (2.12)

Then the triplet
qinT = (Qqa, [,Qux) 2.13)

represents the quadratic integral triad over A if and only if the following inductive limit is verified

[,=lm[,=1lm@)" = @) (2.14)
xeU xeU

where 0 satisfies the Leibniz product rule. According to the terminology of (1.6), we can write expression (2.13) as
QI NTy = (QDMody,I NT;, QAlgy) (2.15)

where I NT; represents the set (or the category) of integral triads, QI NTx is the category of quadratic differential modules and
QAlgy is the category of algebras, all over X.

Considering the linear mapping Q: Dif fT — QDiffT S QDiffT which clearly defines an operator satisfying the expressions
(2.8), (2.9) and (2.12), we observe that ( is a quadratic functorial operator.

Theorem 2.1 The quadratic functorial operator ( is a covariant functor.

Proof. Let dT;, dT;, dTy, € Ob(DiffT) and mdT;; € Hom(dT;, dT;), mdTy € Hom(dT;,dT}) and mdTj, € Hom(dT},dTy).
Let us apply the operator Q on Dif T, so that

(D Q(dejk" mdT;;) = mQdTj> mQdT;; = Q(mdTj.)Q (mdT;;)
(2) Q(iddTi) = ideTi = ldQ(dTl)

By convenience, we set the quadratic functorial operator as

QDiffT =< (DiffT,q ={q4,40}) > (2.16)
where {q.4 , o} satidfies (2.1).
Analogously, we can construct the quadratic functor operators as

QOpenX : DiffTOpenX - QDiffTOpenX (2.17)

and

Qrop * DiffTrop = QDiffTrop (2.18)
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For Hj‘{ = HomK(c/li,c/lj) and Hgl = Homy (Qll, Q} , the triplet (Hij, ay, H;{) is a differential triad over X, Openy or TOP

then consequently the quadratic functorial operator Q acts on (H Jdy, Hg ) so that the quadratic differential triad becomes
S (ATUY = 44T — oo\ g (Y 4 ..
Q(dTY) = qdTV = ((Hﬂ,qHz),au’(Hnl,qu)) (2.19)

3. The main result

Our purpose now is to study the methods under which we associate the quadratic differential triad over (X , (cqu, qa X)) denoted
by qdTy = ((C/ZX, qﬂx), dy, (QX, qQX)) to a Clifford differential triad over (X, (cqu, qdqx)) denoted by

CdTy = (C(c/qx, qﬂx), a5, C(QX, qﬂx)). Designing the categories of Clifford differential triads over X, Openy and TOP by
CDiffTx , CDif fTopeny» and CDif fTrop and letting (EX, qEX) be a quadratic space, the Clifford algebra of (EX, qEX) or simply,
of E, is as a pair (Cy, cyx) formed by an Ax—algebra Cy and an A-linear map cy: Ey — Cyx such that, for any open U € X, we
have (see[l], [2],[3] &[7])

CU(S)Z = un(S)'1CU (3’1)

where s € E; = E(U) and 1, designs the unity in Cy = C(U) . Also, for any cAx-algebra Fy and all Ax—linear map
fx:Ex — Fx such that, for any open U € X, we have

fu($)? = qg,(s). 1g, (3.2)

where s € Ey, there exists a unique morphism oy:Cy — Fy of Ayx—algebras verifying oyocy = fy. The Clifford Ay—algebra
(Cy, cx) is denoted by

Cx = CX(EX' QEX) = (CX(EX' QEX)' CX) (3.3)
Analogously, we construct Clifford Ax—algebra through another approach, designing by [ (qEX) the Ax—ideal of the tensor Ax—
algebra T(Ey) generated , for any open U €X , by the elements of the form

(s®s).qg,(s)- 17(5,), s € Ey (3.4)
We restrict the graduation of T(Ey) on Z/(2), the Ax—ideal I (qEX) is homogeneous and the quotient

T(Ex)/1(qky,) (3.5)

is a graded Ay —algebra on Z/(2) , such that the homogeneous elements of degrees o and 1 are easy to describe.
We design by

To(Ex) =To(Eoy) and Ty(Ex) = Ty(E1y) (3.6)

respectively, the sub Ax—algebra of homogeneous elements of degree 0 and the sub Ay —module (or sub-vector sheaf) of
homogenous elements of degree 1. We set

CX(EX' qEX)T(EX)/I(qEX) 3.7
and the canonical projection 7y:T(Ey) — cx (EX, qEX) is such that , for any open U € X, we have
2
(my($))" = aiy (5)- 1rey) (3.8)
with s € Ey . As T(Ex) = To(Ex) + T, (Ex) , we observe that
CX(EX' QEX) = Cox(on' QEOX) + ClX(Elx' qux) (3.9

Where Cox(on, qEOX) = nx(To(on)) al’ld ClX(E].X’ quX) = nx(Tl(Elx)). It fOllOWS that CX(EX ) qEX) IS a Z/(Z) —graded c/qx'
algebra.

Theorem 3.1 Let 6y: Ex = Dy be an Ax—linear map such that , for any open U € X, we have

(65())" = a5, (s)-1¢,, s € Ey (3.10)
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Then, there exists a unique Ayx—algebra morphism @y: Cy — Dy such that
2
(6u())" = pu(my(s)) 3.11)
Proof. By definition of tensor Ax—algebra, there exists a unique map
8x:T(Ex) = Dy
which extends Jy , then, for s € Ey;, we have (see[23] & [24])

gu(5®5 = qgy (5). 1T(EU)) = (S_U(s_®s) = qey (). 17z
=6y (s)oy(s) — CIEU(S)- 1T(EU)

=0y (s)dy(s) — QEU(S)- Py (”U(lT(EU)))
= (6u())" = 4, (5). 1p,,

It follows that 5y (I1(qx)) = 0 and 1(qx) < ker(Ey). For these reasons, there exists a unique @y: Cy = Dy such that
(pUO TIUISU al’ld SUO tU=6U

where 8 (s) is the contraction of &y(s), for any s € Ey, with U € X open.
Setting qg, (s) = g, (s) , hence, for r € my(Ey) , we get
r2 = an(EU) (T') 1TU

For a quadratic differential triad qdTy = ((Ax,q.ay ), 0x, (Qx, qay, ) over (X,Ay), the Clifford differential triad relative is
represented by the triplet

(C(Ax 9,). 85, C(Qx. 40y ) (3.12)
such that

(@ ¢ (c/lX, qaqx) - Ay and V¥: (QX, qﬂx) — Ay are linear maps satisfying

{(b(a)d)(a) =—qu,(a).1, a €Ay (3.13)
P@W(@) = —a, ()1, s € QY |
(b) @ and  extend uniquely to ¢: (C/ZX, qc,qx) — Ay and P: C(QX, ‘Inx) - Qy
We set
CdTy = (C(Ax, .,). 05, C(Qx. qay) ) (3.14)

where C designs the functorial morphism which transforms a quadratic differential triad qdTy to a Clifford differential triad CdTy
and dj satisfies the Leibniz (product) rule as given in (1.7). For convenience , we write

CdTy = (C(Ay), 05 ,C(Qy)) (3.15)

By Considering CTix = (C(Aix), 0 ,C(Qix)) and CTix = (c(cﬂjx), % C(ij)) as two Clifford differential triads, the
morphism from CT;y to CTjy is the triplet

(chf, . 05", Chg ) (3.16)

where Chzx € Homg, (C(cﬁlix), C(c/ljx)) and Chf{x € Homg, (C(Qix), C(ij)) are assumed to be continuous maps and

6;” satisfies the Leibniz (product) rule which verifies for any open U in X, the relation
d’(Chy,) = Ch, (3.17)

From the above concepts, it follows that
Chgxo Ofx = anOChile (3.18)
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so that we write

dy (Chy g = (Chg, o 0fx)(a;) = (9fx ° Chiy, )(a) (3.19)
for any a; € C(A;x). Since the category of Clifford differential triads is denoted by CDiffT , clearly the mapping F:QDiffT —
CDif fT behaves nicely as a differential triad functor. Consequently, the mapping C: Dif fT — CDiffT is the Clifford
differential triad functor regarding the following composition relation

FoQ=C (3.20)

From which one writes

€ (A 9). 0 (B 4y )) = (€A 0). 5, € (0 0 (321)

By fixing a common basis topological space X ,then we design the categories of differential triads, quadratic differential triads and
Clifford differential triads, respectively, by Dif fTy , QDif fTx, CDif fTyx . A complex of free left (resp. right) C(cA)-modules is a
sequence of left (resp. right) the following C (A)-homomorphisms

ci—-1 dc,i+1

d dot .
C@Q) = — CQ) — COF) — ... (3.22)
between left (resp. right) C(A)-modules € (QY) and C(Q**1) which satisfy, for any open U in X

Imd“~1(U) € Ker d*(U),i.e.,d5 od5 ™" = 0y (3.23)
Vie

Regarding the above composition (3.23), where by definition
d® = 9°,d = d° (3.24)
for any i = 1, where the symbol d designs the differentia/ A-homomorphism.
If we specify the order of the set () of differential forms (sheaf of differential A-modules) by setting
C(Q% = C(A), C(Q) = ca)i = C(N'QY) (3.25)
where A = A4 be the exterior (the skew symmetric homological tensor ) product, for any
i > 1. We have, more explicitly
CAOY) =CA)NC),CQ%) =C(A)ACOHANCEQY) (3.26)

A complex of free left (resp. right) C(A)-modules denoted by

Ip. Ir. I5.
c)=.. L) ey I (3.27)
is a sequence of left (resp. right) C(A)-homomorphisms [ i1 f C( Qi) > C(Q;) between left (resp. right) C(A)-modules
which satisfy, for any open U in X
Imf ., , Skerf,, ,ie, [, 0f ,,=0,=0 (3.28)

forall i € Z , where the symbol [ designs the integral C(A)-homomorphism. By replacing C(Q}) by CdT! and C(Q;) by
C(inT;), we obtain , respectively the complexe :

mdr6i-1 . mdT®i . mdroitl
CdT) = —— CdT) — CdT*) —— ...
And
mfinT; mfinT 44 mfinT 4,

C@nT. ) =.. ——CUnfT;) «———C(inTyy)
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We set C(dT') = C(infT;) within C(cA)-isomorphism, and mdT %! and mfinT;,, are morphisms, respectively, of Clifford
differential triads and of Clifford integral triads, for all i € Z. In other words, we have (see[15])

mfinT;,; o mdT® = ide(arty (3.29)
4. Applications

We suggest some physics applications of Clifford differential triads by revisiting special relativity when we take into consideration
a natural algebraic concept alternative to the Minkowski space-time. The two algebras considered are

(A); Apg is the real underlying of the R —algebra sheaf A;

(4); Cl,4(Ag) isthe 2 —dimensional Clifford AR —algebra.

Our approach consists to replace the unit imaginary i =+v—1 by an element e;e, of Cl,, (c/lR(U )) , where (e; , e;) is an
Ar(U) —basis of AR (U) . In this case, an Ag(U) —basis of Cl, (cﬂR(U)) is

(I, e1,e3,€18;) = (I, €4, €3, 1) (4.1)
where e = eZ =1and e,e, = —e,e; , from which we clearly obtain
12 = (e1€,)? = ejee.e, = —eje 0,8, = —elef = —1 4.2)

and [ is an alternative of i = v/—1 . An element y in Cl, o(AR) is written as follows
u=Ila+mnre +ne, +1b (4.3)
where a € Ay , e, + 1,6, EAL , b € Ay and b € N2Ay , i.e., we set
Clyo(Ar) = Ag ® Af ® N2Ag = NP Ag@N AR@N* Ay (4.4)
In short, one writes within Ar —isomorphism
Clyo(ARr) = NAR 4.5)
where AApR is the exterior AR —algebra of Ap.

For two vectors given by u =re; +rye, and ' = rie; + rye, in Cl, o(Ag), one can check that their product called the Clifford
(or geometric) product, is determined as follows

pp = pp+op A (4.6)
where p.p’' = +nry) and u A p' =(mry —nr)l.
The distance measure or metric over the space Cl, o(AR) is p. u’. Considering the following map
cx: (Ar®AR)x = Clz,o(cﬂR)x
defined, for any open U in X, by
cy(§e) = cu(§1,82) = Mo, N1, M2 M3) =y (4.7)
with i = 0,1,2,3 suchthatn, =a, n, = 1, Ny, = 13, N3 = b € (Ar)y-
We observe that if (eq, e,) is (Ag)y —basis of (Ar@AR)y , then (I, ey, e,,e1e;) is (Ar)y —basis of Cly o (ARr)y-
Using differential triad notation, we get
; qdTx = ((ArDAg)x, Ox , &' (Ar@Ag)x) (4.8)
an
qdTy = (Clyo(Ar)x, 0% , Q' (Clyo(Ar)x)) (4.9)
where d$ designs the Clifford differentials.

Considering the 2- real Euclidean differential triad, for any open U in X, we have
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dy(ry, 1) = (dyry, dyrz) = (dry, dry) = dr]-' Jj=12
so that the Pythagorean distance measure (or metric) is written as

dS? = dr? + dr?

1 0\/dr
ds? = (dr,, dr. ( 1)
(dr,dr) () e
dS* = §ydrdr,,  j k=12

(4.10)

By setting § = detdj, = 1, then the motion of a particle of mass M is governed by the following 2-velocity and 2-acceleration

=4
T ar
av;
J at
d . . T
where - designs the proper-time derivative in R*@ R# .
In partial derivatives notation, we write
d
6] —a—rj—ar]. ]—1,2

In the integral triad, we write
fﬂqu dr = [ d*r = [V§d*r
For n-dimensional Euclidean space, the above expression is written as
S dr = [ d"r = [V6d"r
and v; and y;, (with j = I, 2,...., n) are the n-velocity and the n-acceleration of the particle.
In Clifford algebra differential triads notation, for any open U in X
dSR = d5(r + Ict) = dyr + ledyt = dr + lcdt

and
ngZ = dUTZ - Czdutz

4.11)

(4.12)

(4.13)

(4.14)

(4.15)

For T as the proper-time of the particle and using initial condition (assuming that dyr? = 0) , expressions (4.14) and (4.15)

become
d5R, = dry + ledt, dGR? = —c?dyt?
It follows that, for a space-time interval , we have dSR2 = d§R? so that
—c?dyt? = dyr? — c?dyt?
In other terms, for dyr = vdyt expression (4.17) becomes

v2

c?dyt? = c?dyt? (1 - C—)

Setting

Then we get the famous dilatation formula
dt =dyt =Tdyt
In terms of proper-time, the proper velocity becomes
_d°R _arat

dt dt dt
V—?—EE'FZCE—UE'FZCE—F(U+lc)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

4.21)
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From (4.21), we easily obtain
V2= (ﬂ)z =T?( + lc)?> =T?(W? — ¢?), vic = —lcv
drt ’

where V2 = —¢? and the fact that / anticommutes with each component of v and [? = —1
If M designs a massless particle, then the linear momentum is

P =T(Mv + Mlc)
so that

PZ — —M2V2
By setting

p=TMv and E =TMc?

then p and E are respectively the relativistic linear momentum and the total energy. It follows that

E
P—p+;l
c
IfwesetV#=d Ru
d

T

, then the motion of free particle with mass M is governed by the equation

W
‘V[l - d -
Withu =1,2,3
where V), is the 4-velocity and y,, the 4-acceleration.
We can also write
dCr av
= e wd v=4r
d¢ . . S
where o designs the proper-time derivative in Cl, o (AR).
Using partial derivatives, we obtain :
c=9% _ ac
au = 617H = anu = lat + elarl + elarz = lat + V

where V = e,0,, + e,0,, is the space gradient operator and G,f is the space-time gradient operator. Consequently, we obtain

(a,f)z =1?0? +V? + 10,V + VI3, = —02 + V* + 19,V — VO, = —0}% + V? + 10,V — 19, V.
In other terms we have

(05)* = —0F + V2
where [ anticommutes with each component of V and [2 = —1

Thus , we set

Dg = —(agu)z =V?-9?
and say that D,C, is the Clifford d’ Alembertian operator on scalars (or on multivectors).
For a (real) free massive scalar (or multivector) field ¥, then we set

a,f’}’ = [IM¥ or 6,?’}’ =l MYV
where [/ is the identity matrix and observe that

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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(05)? = —M? = (07 +VH¥Y =-M?Y = (V2 -03H)¥Y=-M*Y¥ 4.31)
Using (4.29), we obtain the Clifford Klein-Gordon equation
(o —M*)¥ =0 (4.32)
The Pythagorean distance measure (or Riemann metric) in Cl, o(Ag) is given by
dS? = dr? — c%dt? = dS? = dr? + dr} — c?dt?

Using matrix and tensor notations, we obtain respectively

1 0 0\ /dn
ds? = (dry, dry, cdt) (0 1 0 )(drz>

0 0 =1/ \cdt
And ds* = gt¢dn,dn., pe=123

with g = detg,, = —1. Using (4.29), thus it is clear that
Dg = g"v, v, - 0f (4.33)

and say that D,C, is the Clifford d’Alambertian operator associated to the Riemann metric g#®.
In integral triad form in Cl, o (AR), we write

fclz,o(cﬂm{) dr = [dn, =[/gd

5. Conclusion

We have studied differential triads as basic notions through which fundamental concepts of abstract differential geometry were
constructed. We have constructed Clifford differential triads with the help of quadratic differential triads. We have come up with
category of Clifford differential triads determined through the category of differential triads or category of quadratic differential
triads. Some physics applications in special relativity were suggested.
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