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 ARTICLE INFO    ABSTRACT 
 

 

The present paper studies on the laminar two-dimensional boundary layer flow and heat transfer of an 
incompressible viscous fluid with thermal radiation in existence of Porous medium and Magnetic field 
over a nonlinearly stretching sheet is investigated numerically. The governing boundary layer equations 
are reduced into ordinary differential equations by a similarity transformation. The malformed 
equations are solved numerically using an embedded finite difference scheme known as the Keller-box 
method. The numerical solutions for the wall skin friction coefficient, the heat transfer coefficient, and 
the velocity and temperature profiles are evaluated, analyzed and discussed. 
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INTRODUCTION 
 

The study of The Numerical solution of the Boundary Layer 
flow over an Nonlinearly stretching sheet under the influence 
of the Porous Medium and Magnetic fields of considerable 
interest because of its ever-increasing industrial applications 
and important bearings on several technological processes. 
The production of sheeting material arises in many industrial 
manufacturing processes and includes both metal and polymer 
sheets. In last few decades, the study of flow and heat transfer 
in porous media has received much reflection due to its ever-
increasing applications in industries and in contemporary 
technology. As in other porous media problems such as geo-
mechanics and insulation engineering, the conventional 
method is to simulate the pressure drop across the porous 
regime using Darcy linear model S. Suneetha,  N.B.  Reddy 
(Suneetha,  2011). It is well known that porous materials can 
be used to enhance the heat transfer rate from stretching 
surfaces A. Tamayol, M. Bahrami (2009). Elbashbeshy and 
Bazid (2000 & 2003), analyzed respectively the effects of 
variable-viscosity and internal heat generation/absorption on 
flow and heat transfer through a porous medium over a 
stretching surface. An excellent literature review on flow 
through porous media can be found from Starov and 
Zhdanov (2001) Kaviany (1992), Kiwan and Ali (2008) and 
Tamayol et al. (2010).  
 
*Corresponding author: Shiva Prasad Rayapole 
Department of Mathematics, Osmania University, Hyderabad, Telangana 

 

 

It is worth stating that the studies of thermal radiation and heat 
transfer are important inelectrical power generation, 
astrophysical flows, solar power technology and other 
industrial areas. Alot of extensive literature that deals with 
flows in the presence of radiation effects is now available 
(2001), Elbashbeshy and Dimian (2002) analyzed boundary 
layer flow in the presence of radiation effect andheat transfer 
over the wedge with viscous coefficient. Besides that, (2008), 
Cortell (2008) has solved a problemon the effect of radiation 
on Blasius flow by using fourth-order Runge-Kutta approach. 
Later, (2008), Sajid andHayat (2008) considered the influence 
of thermal radiation on the boundary layer flow due to an 
exponentially stretching sheet by solving the problem 
analytically via homotopy analysis method(HAM). Recently, 
[12] El-Aziz (2009) and (2013), Ishak (2009) also focused on 
the effects of thermal radiation in their studies. The purpose of 
this present work is to extend the Numerical Solution of the 
Boundary Layer Flow Over an Exponentially Stretching Sheet 
with Thermal Radiation published by Biliana Bidin (2009). A 
governing continuity, momentum, energy  together with 
associated boundary conditions are first reduced to a set of 
self-similar non-linear coupled ordinary differential equations 
by suitable transformations. These equations are solved 
numerically by using the Keller Box method. Estimation of 
heat transfer coefficient which is very important from the 
industrial application point of view is also presented in this 
analysis. It is hoped that the results obtained will not only 
provide useful information for applications, but also serve as a 
complement to the previous studies. 
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MATHEMATICAL FORMULATION 
 
In this paper, the attributes of viscous flow with respect to 
Nano-fluid on anextracting sheet is considered. Generally, the 
flow is possible when the condition � ≥ 0. Here, the term � is 
the normal coordinate with respect to the expanding sheet. 
Practically the steady uniform stretching leads to equal and 
opposite forces along � − ����;  Hence the sheets will be 
expanded by fixing the origin. The following assumptions are 
made before getting into more mathematical calculations. 
Assume the temperature at extending surface as a function of 
�, ambient temperature T as constant and at the sheet nano 
particle fraction C as a constant with a value ��. Now assume 
that the sheet is expanded by stretching with a nonlinearity 
parameter � along with a velocity of ��(�) = � ��. Here � is 
the extending surface coordinate where the measurement is in 
existence. 
 
Now consider a nanofluid is flowing at � = 0 and consider 
fluid to be under the influence of electrical conduction because 
of the magnetic field �(�), which is normal to stretching 
sheet. Make a note that at stretching surface the �� (wall 
temperature) and ��are considered to be constant. The 
ambient value of temperature (�∞) and nanoparticle fraction 
(�∞) are denoted when � tends to infinity. The physical system 
considered for this study included for nano-technical 
fabrication and thermal material processing. In the Fig. 1, 
coordinate system and flow models are shown and governing 
equations are given below: 
 

 
 

Fig. 1. The Physical Model and consequent Coordinate Systems 
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The boundary conditions for the velocity, temperature are 
given below: 
 
y = 0 :  ��  =  ���,     v=0, T= �� ,                                        (4) 
 
y = ∞ : u = 0,    v = 0, T= �∞,                                             (5)  

 
Here, u and v are the velocity components along the x and y 

axes, respectively.   fck  /  is the thermal diffusivity, σ 

is electrical conductivity, ν is the kinematic viscosity, f  is 

the density Of the base fluid.     fp CC  / is the ratio 

between the effective heat capacity of the nanoparticle material 
and heat capacity of the fluid, c is the volumetric volume 

coefficient, p  is the density of the particles, and C is rescaled 

nanoparticle volume fraction. We assume that the variable 

magnetic field B(x) is of the form B(x) = 
  2/1

0
nxB

  
 
Using Rosseland approximation for radiation, We can write 
 

�� = −
��∗

��∗

���

��
                                                         (6) 

 
where �∗ is the absorption coefficient, �∗ is the Stefan-
Boltzman constant, Assuming the temperature difference 
within the flow is such that ��  may be expanded in a Taylor 
series about �∞ and neglecting higher orders we get �� ≈
4�∞

�� − 3�∞
�. 

 
Hence Eq. (7), becomes 
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The dimensionless variable can be taken as 
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Where,   represents stream functions and is defined as
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so that equation (1) is satisfied identical. 

 
Substituting Eq (8) into Eqs (1) – (3) , We obtain the Ordinary 
Differential equations as follows: 
 

0)(2 2  fGMffff              (9) 
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The malformed boundary conditions 
 

,0)0( f 1)0( f , ,1)0(   
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Where primes denote differentiation with respect to, the 

involved physical parameters are defined as: 
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Here Pr, M, Ec, G and R denote the Prandtl number, Magnetic 
parameter, Eckert number, Porous Medium and thermal 
radiation respectively. This boundary value problem is 
condensed to the classical problem of flow and heat transfer 
due to a stretching surface in a viscous fluid when n = 1 in eqs 
(10). 
 
The quantities of practical interest, in this study, are the local 

skin friction
fxC , Nusselt number 

xNu  which are defined as 
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Where k is the thermal conductivity of the nanofluid and wq  is 

the heat fluxes at the surface, respectively, given by 
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Substituting Eq (6) into Eqs (14) – (15), we obtain 
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Where 
v

x
uwx Re  is the local Reynolds number 

 

RESULTS AND DISCUSSION 
 

The reduced Eqs. (9) – (11) are nonlinear and joined, and thus 
their exact analytical solutions are not possible. They can be 
solved numerically using Keller Box for different values of 
parameters such as magnetic parameter, Prandtl number, 
Eckert number, Porous Medium and Thermal radiation.  
 
The effects of the budding parameters on the dimensionless 
velocity, temperature, skin friction, and the rates of heat 
transfer are investigated. 
 
The important steps in using the Keller Box method are: 
 

 Reducing higher order ODEs (systems of ODEs) in to 
system of first order ODEs; 

 Writing the systems of first order ODEs into difference 
equations using central differencing scheme; 

 Liberalizing the difference equations using Newton’s 
method and writing it in vector form; 

 Solving the system of equations using block 
eliminations method. 

 

In order to solve the above differential equations numerically, 
we adopt Mat lab software which is very efficient in using the 
well-known Keller Box method. 
 
To authenticate the present solution, comparisons have been 
made with previously published data in the fiction for 

)0(   in Table 1, and they are found to be outstanding. 

 

Table 1. Estimation of Nusselt number for various Values of Ec 
when Pr, R and Ec. 

 
Pr R Ec Bidin Present 

1 0 0.0 0.9547 0.9559 
  0.2 0.8622 0.8634 
  0.9 0.5385 0.5395 
2 1 0.0 0.8627 0.8122 
  0.2 0.7818 0.7171 
  0.9 0.4984 0.3843 
3 1 0.0 1.1214 1.0191 
  0.2 1.0006 0.9929 
  0.9 0.6055 0.8974 

 
Various comparisons are presented in Table 1 to authenticate 
the proposed method with respect to previous method for the 
equations−� ′(0). These comparisons resulted to be 
outstanding and are found to be excellent. At the same time 
various effects due to magnetic and viscous parameters are 
shown in the Table 1. 
 

Table 2. Resulting table: Showing results of Skin Friction

)0(f  , Nusselt number )0(   for the values of M, Pr and 

G when n= 1,Ec=0 and R=0 
 

Pr G M )0(f   )0(   

1 0 0.0 1.2821 0.9559 
  0.5 1.4665 0.9079 
  1.0 1.6292 0.8671 

2 0 0.0  1.0205 
  0.5  1.0204 
  1.0  1.0231 

3 0 0.0  1.0207 
  0.5  1.0207 
  1.0  0.0236 

 
Table 2, it is clear that the Nusselt number is a diminishing 
function of M, Pr, whereas.  The values of the skin friction 
coefficient can be experiential in an increasing manner for 
various values of M in Table 2. The magnetic field number 
values. The increase in the tangential velocity as the magnetic 
parameter M decreases is because the existence of a magnetic 
field in an electrically conducting fluid introduces a force 
called the Lorentz force, which acts against the flow if the 
magnetic field is applied in the normal direction, as in the 
present study. This resistive force slows down the fluid 
velocity component as shown in Fig. 2. For different values of 
the magnetic parameter M the temperature profiles are plotted 
in Fig. 3. It is obvious that an increase in the Magnetic 
parameter M results in an increase in the temperature within 
the boundary layer.  
 

 
Fig. 2. Velocity profile for M 
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Fig. 3. Temperature profile for M 
 

Figure 4, show effect of porosity parameter G on the velocity 
profiles. It is experiential that the presence of the porous 
medium reduces the velocity profile. This is because the 
porous medium inhibits the fluid not to move generously 
through the boundary layer. Figure 5, show effect of porosity 
parameter G on the temperature profiles, It is observed that the 
presence of the porous medium. Where as it increases the 
temperature profile. This is because the porous medium 
inhibits the fluid not to move freely through the boundary 
layer. This leads the flow to increase thermal boundary layer 
thickness.  
 

 
 

Fig. 4. Velocity profile for G 
 

 
 

Fig. 5. Temperature profile for G 
 

Fig. 6 depicts for the different values of the radiation 
parameter R the temperature profiles. It is evident that an 
increase in the radiation parameter R results in an decrease in 
the temperature within the boundary layer. Figures 7 show the 
behaviour of temperature for different values Prandtl number. 
The numerical result shows that the effect of rising values of 
Prandtl number results in a falling velocity. It is observed that 
an increase in the Prandtl number results a decrease of the 
thermal boundary layer thickness and in general lower average 

temperature within the boundary layer. The reason is that 
smaller values of Pr are correspondent to increase in the 
thermal conductivity of the fluid and therefore, heat is able to 
disperse away from the heated surface more quickly for higher 
values of Pr. Hence in the case of smaller Prandtl number as 
the thermal boundary later is thicker and the rate of heat 
transfer is reduced. For different values of the Eckert number 
Ec the temperature profiles are plotted in Fig. 8 It is obvious 
that an intensify in the Eckert number Ec results in an increase 
in the temperature within the boundary layer. 
 

 
Fig. 6. Temperature profile for R 

 

 
 

Fig. 7. Temperature profile for Pr 
 

 
 

Fig. 8. Temperature profile for Ec 
 
Conclusion 
 
The fundamental governing equations are rehabilitated to 
paired nonlinear usual differential equations. Keller Box 
method is used to perform the numerical calculations. The 
effects of nonlinear extending parameter, Prandtl number, 
radiation parameter, porous medium and Magnetic parameters 
on the heat transfer features are analyzed. Finally, got an 
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excellent agreement with the previous paper. Briefly the above 
negotiations can be concise as follows. 
 

1. The Local Nusselt number decreased with the increase 
in Magnetic parameter and Prandtl number It is also 
noticed that the nonlinear stretching parameter is to 
stifle the velocity field. 

2. The velocity of the fluid is originate to be decreased 
with the increase in M where as the temperature is 
increased in this case. 

3. The velocity of the fluid is found to be decreased with 
the increase in Porous term G  where as the temperature 
is increased in this case. 

4. The rising effect of the Radiation parameter decreases 
the temperature. 

5. The growing effect of the Prandtl number decreases the 
temperature. 

6. The mounting effect of the Eckert number increases the 
temperature. 

 
Acknowledgement 
 
I thank MHRD, Govt. of India for supporting my work 
through UGC-BSR Fellowship. The authors thank the 
reviewers for their    constructive suggestions and comments, 
which have improved the quality of the article considerably. 
 

REFERENCES 
 
Biliana Bidin, 2009, Numerical Solution of the Boundary 

Layer Flow Over an Exponentially Stretching Sheet with 
Thermal Radiation. European Journal of Scientific 
Research ISSN 1450-216X Vol.33 No.4 (2009), pp.710-
717 

Cortell, R. 2008. Radiation effects in the Blasius flow. Applied 
Mathematics and Computation198: 333-338. 

El-Aziz, M.A. 2009. Radiation effect on the flow and heat 
transfer over an unsteady stretchingsheet. International 
Communications in Heat and Mass Transfer 36: 521-524. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Elbashbeshy, E.M.A. 2001. Heat transfer over an 
exponentially stretching continuous surfacewith 
suction.Archive of Mechanics 53: 643- 651. 

Elbashbeshy, E.M.A., Bazid, M.A. 2003. Heat transfer over a 
stretching surface with internal heat generation Appl Math 
Comput, 138 (2003), pp. 239-245ArticlePDF (91KB) 

Elbashbeshy, E.M.A., M.A. Bazid, 2000. Heat transfer over a 
continuously moving plate embedded in a non-Darcian 
porous medium Int J Heat Mass Transfer, 43 (2000), 
pp. 3087-3092ArticlePDF (257KB) 

Ishak, A. 2009. Radiation effects on the flow and heat transfer 
over a moving plate in a parallelstream.Chinese Physics 
Letters 26: 034701. 

M. Kaviany, 1992. Principles of heat transfer in porous media 
Springer, New York (1992) 

S. Kiwan, M.E. Ali, 2008. Near-slit effects on the flow and 
heat transfer from a stretching plate in a porous medium 
Numer Heat Transfer A, 54 (2008), pp. 93-108 

S. Suneetha, N.B. Reddy, 2011. Radiation and Darcy effects 
on unsteady MHD heat and mass transfer flow of a 
chemically reacting fluid past an impulsively started 
vertical plate with heat generation Int J Appl Math 
Mech, 7 (7) (2011), pp. 1-19 

Sajid, M. & Hayat, T. 2008. Influence of thermal radiation on 
the boundary layer flow due to anexponentially stretching 
sheet. International Communications in Heat and Mass 
Transfer 35:347-356. 

Starov, V.M., V.G. Zhdanov, 2001. Effective viscosity and 
permeability of porous media Colloids Surf A, 192 (2001), 
pp. 363-375ArticlePDF (169KB) 

Tamayol, A.  Bahrami, M. 2009. Analytical determination of 
viscous permeability of fibrous porous media Int J Heat 
Mass Transfer, 52., pp. 2407-2414ArticlePDF (759KB) 

Tamayol, A., Hooman, K., Bahrami, M.  2010. Thermal 
analysis of flow in a porous medium over a permeable 
stretching wall Transport Porous Med, 85, pp. 661-676 

 
 
 

******* 

6978                 Asian Journal of Science and Technology Vol. 08, Issue, 12, pp.6974-6978, December, 2017 
 


