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In this paper, we apply the notion of double-framed fuzzy soft set to module theory. We introduce the 
concept of double-framed fuzzy soft G-modules, fuzzy soft d-ideals of modules and investigate several 
properties. We give relations between a double-framed fuzzy soft G-modules [DFFSGM] and bipolar 
fuzzy soft d-ideal [DFFSDI].  We provide a condition for double-framed fuzzy soft G-modules to be a 
double-framed fuzzy soft d-ideal.  We also give characterizations of double-framed fuzzy soft ideal.  
We consider the concept of strongest double-framed fuzzy relations on double-framed fuzzy soft d-
ideals of a module and discuss some related properties. 
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1. INTRODUCTION 
 

Soft set theory was introduced in 1999 by Molodtsov [22] for dealing with uncertainties and it has gone through remarkably rapid 
strides in the mean of algebraic structures as in [1, 2, 11, 14, 15, 16, 18, 25, 28]. Moreover, Atagun and Sezgin [4] defined the 
concepts of soft sub rings and ideals of a ring, soft subfields of a field and soft sub modules of a module and studied their related 
properties with respect to soft set operations. Operations of soft sets have been studied by some authors, too. Maji et al. [19] 
presented some definitions on soft sets and based on the analysis of several operations on soft sets Ali et al. [3] introduced several 
operations of soft sets and Sezgin and Atagun [26] studied on soft set operations as well. Furthermore, soft set relations and 
functions [5] and soft mappings [21] with many related concepts were discussed. The theory of soft set has also a wide-ranging 
applications especially in soft decision making as in the following studies: [6, 7, 23, 29].  K.Hayat et.al [7] defined applications of 
double-framed soft ideals in BE-algebra. Jun et al [[9],[10]] introduced the notion of double-framed soft sets (briefly, DFS-sets), 
and applied it to BCK/BCI- algebras. They discussed double-framed soft algebras (briefly, DFS-algebras) and investigated related 
properties. A.R.Hadipour [4] defined Double-framed soft BF-algebras and Yongukchoet.al [15] studied on double-framed soft 
Near-rings. In this paper, we apply the notion of double-framed fuzzy soft set to module theory. We introduce the concept of 
double-framed fuzzy soft G-modules , fuzzy soft  d-ideals of modules and investigate several properties. We give relations 
between a double-framed fuzzy soft G-modules and bipolar fuzzy soft d-ideal.  We provide a condition for double-framed fuzzy 
soft G-modules  to be a double-framed fuzzy soft d-ideal.  We also give characterizations of double-framed fuzzy  soft ideal.  We 
consider the concept of strongest double-framed fuzzy relations on double-framed fuzzy soft d-ideals of a module and discuss 
some related properties. 
 
2.Preliminaries     
 
2.1 Definition:  Let ‘S’ be a set.   A fuzzy set in S is a function  μ : S[0,1]. 
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2.Preliminaries: In this section as a beginning, the concepts of G-module  soft sets introduced by Molodsov  and the notions of 
fuzzy soft set introduced by Maji et al.  have been presented. 
 

2.1 Definition [4]: Let G be a finite group. A vector space M over a field K (a subfield of C) is called a G-module if for every g  

G and m  M, there exists a product (called the right action of G on M) m.g  M which satisfies the following axioms. 
 

1. m.1G = m for all  m    M (1G being the identify of G) 

2. m. (g. h) = (m.g). h, m   M, g, h   G 

3. (k1 m1 + k2 m2). G = k1 (m1. g) + k2(m2. g), k1, k2     K, m1, m2   M & g    G. In a similar manner the left action of G on M 
can be defined. 
 
2.2. Definition [4]: Let M and M* be G-modules. A mapping Ø: M→M* is a G-module homomorphism if 
 
1. Ø(k1 m1 + k2m2) = k1 Ø (m1) + k2 Ø (m2) 

2. Ø(gm) = g Ø (m),  k1, k2    K, m, m1,m2    M & g    G. 
 
2.3. Definition [4]:Let M be a G-module. A subspace N of M is a G - sub module if N is also a G-module under the action of G. 
 
Let U be a universe set, E be a set of parameters, P(U) be the power set of U and A ⊆ E. 
 
2.4.Definition[29]: A pair (F,A) is called a soft set over U, where F is a mapping given by  F : A→P(U). 
 
In other words, a soft set over U is a parameterized family of subsets of the universe U. 
 
Note that a soft set (F, A) can be denoted by FA. In this case, when we define more than one soft set in some subsets A, B, C of 
parameters E, the soft sets will be denoted by FA, FB, FC, respectively. On the other case, when we define more than one soft set in 
a subset A of the set of parameters E, the soft sets will be denoted by FA,GA, HA, respectively. For more details, we refer to 
[11,17,18,26,29,7]. 
 
2.5. Definition[6] :The relative complement of the soft set FA over U is denoted by Fr

A, where  Fr
A : A → P(U) is a mapping given 

as Fr
A(a) =U \FA(a), for all a ∈ A. 

 

2.6.Definition[6]: Let FA and GB be two soft sets over U such that A∩B ≠ ∅,. The restricted intersection of FA and GB is denoted 
by FA ⋓ GB, and is defined as FA ⋓ GB =(H,C), where  
 
C = A∩B and for all c ∈ C, H(c) = F(c)∩G(c). 
 

2.7. Definition[6]: Let FA and GB be two soft sets over U such that A∩B ≠ ∅,. The restricted union of FA and GB is denoted by 
FA∪R GB, and is defined as FA∪R GB = (H,C),where C = A∩B and for all c ∈ C, H(c) = F(c)∪G(c). 
 

2.8. Definition[12]: Let FA and GB be soft sets over the common universe U and �be a function from A to B. Then we can define 

the soft set � (FA) over U, where � (FA) : B→P(U) is a set valued function defined by � (FA)(b) = {F(a) | a ∈ A and  � (a) = b},   

if�−1(b) ≠ ∅,  = 0 otherwise for all b ∈ B. Here, � (FA) is called the soft image of FA under �. Moreover we can define a soft 

set	�−1(GB) over U, where �−1(GB) : A → P(U) is a set-valued function defined by �−1(GB)(a) = G(� (a)) for all a ∈ A. 

Then,	�−1(GB) is called the soft pre image (or inverse image) of GB under �. 
 

2.9. Definition[13]: Let FA and GB be soft sets over the common universe U and � be a function from A to B. Then we can define 

the soft set �⋆(FA) over U, where �⋆(FA) : B→P(U) is a set-valued function defined by �⋆(FA)(b)= {F(a) | a ∈ A and � (a) = b},  

if �−1(b) ≠ ∅,=0 otherwise for all b ∈ B. Here,	�⋆(FA) is called the soft anti image of FA under �. 
 

2.1. Theorem [13]: Let FH and TK be soft sets over U, Fr
H, Tr

K be their relative soft sets, respectively and � be a function from H 

to K. then, i)	�−1(Tr
K) = (�−1(TK))r ,  

 ii)	� (Fr
H) = (�⋆(FH))r and �⋆(Fr

H) = (� (FH))r . 
 

2.10. Definition[14]: Let FA be a soft set over U and a be a subset of U. Then upper �-inclusion of FA, denoted by ��
⊇�

  , is 

defined as ��
⊇�

  = {x A/F(x)	⊇ �}. Similarly, 
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��
⊆�

 = {x ∈ A | F(x) ⊆�}is called the lower	� -inclusion of FA. A nonempty subset U of a vector space V is called a subspace of 
V if U is a vector space on F. From now on,V denotes a vector space over F and if U is a subspace of V, then it is denoted by U < 
V. 

2.11. Definition [8]:  A double-framed  pair   〈(α�, λ�) ∶ 	G	〉 is called a double-framed fuzzy soft set (briefly DFFS-set) over U 

where α�	 and λ� are mapping from A to P(U). 
 

For a DFS-set 〈(α�, λ�) ∶ 	G	〉  over U and two subsets � and	� of U, the  �-inclusive set and the �-exclusive set of   〈(α�, λ�) ∶
	G	〉, denoted by i� (	α	� ; �) and  e�(λ� ,	�) respectively, are defined as follows. 
 

i� (	α	� ; ) = { x	∈	A / γ	⊆ α	� (x) } and  e�(λ� ,	δ) = { x	∈	A / δ	⊆ λ�(x) } respectively. The set DF�(α�, λ�)(�,�) = { x	∈	A / �	⊆ 

α	� (x), δ	⊆ λ�(x) } is called a double framed including set of  < (α�, λ�) : G > . It is clear that DF�(α�, λ�)(�,�) = i� (	α	� ; )  e�(λ� 

,	δ) . 
 
Example: Let U = { c1,c2,c3,c4 } be the set of four cars under consideration and E = { e1 =costly, e2=beautiful, e3 = fuel efficient, 
e4 = modern technology } be the set of parameters and     A = {e1,e2,e3} is subset of E. Then  
 
(F,A) =              F(e1)  = { (c1, 0.3, 0.4),  (c2, 0.3, 0.5), (c3,0.1,0.2), (c4, 0.7, 0.6)} 
                          F(e2) = {(c1, 0.2, 0.6),  (c2, 0.1, 0.7), (c3,0.3,0.7), (c4, 0.5, 0.6)} 
                          F(e3)  = {(c1, 0.1, 0.3),  (c2, 0.3, 0.5), (c3,0.7,0.2), (c4, 0.3, 0.7)} 
 
From now on, we will take G, as set of parameters, which is a group unless otherwise specified. 
 

Note: 2.5  Let λ� = ( ����� , ����� ,E ) be a double framed fuzzy soft set over U. We will say that  λ�(e)= ( �����(e) , �����(e) ) is image of 

parameter e	∈ E. 
 

2.12. Definition [8]:   Let λ�	and λ�  DFS�(U) then, 
 

I. If  αA(e) =  and  β
A

(e)=U for all  e	∈ E , λA is said to be a null double-framed fuzzy soft set, denoted by �� = ( ,U,E). 

II. If  αA(e) =  and  β
A

(e)=	� for all  e	∈ E , λA is said to be an absolute double-framed fuzzy soft set, denoted by �� = 

(U,	�,E). 
III. λA is double-framed fuzzy soft subset of λB, denoted by λA ⊆ λB, if αA(e) ⊆ αB(e) and β

A
(e) ⊇ β

B
(e)for all e	∈ E. 

IV. Double – framed fuzzy soft union and intersection of λA	and λB, denoted by  (αA ∪ αB) : A B  P(U) such that (αA ∪

αB)(e) = αA(e) ∪ αB(e ) and  (β
A
∩ β

B
)(e) = β

A
(e) ∩ β

B
(e ) for all e	∈ E. Also  (αA ∩ αB) : A B  P(U) such that (αA ∩

αB)(e) = αA(e) ∩ αB(e ) and  (β
A
∪ β

B
)(e) = β

A
(e) ∪ β

B
(e ) for all e	∈ E. 

V. (v)	      Double – framed soft complement of λA is denoted by λA
� and defined by λA

� : E  P(U)  P(U) such that  λA
�(e) 

= {(e,	αA(e),	β
A
(e)): e	∈ E }. 

 
2.13 Definition [23]: Let U be a universe and E a set of attributes. Then, (U,E) is the collection of all double-framed fuzzy soft 
sets on U with attributes from E and is said to be double-framed fuzzy soft  class. 
 
2.14 Definition [23]: A double-framed fuzzy soft set (F,A) is said to be a null double-framed  fuzzy soft set denoted by empty set 
Ф, if for all e ε A , F(e) = Ф. 
 
2.15 Definition[23]: A double-framed fuzzy soft set (F,A) is said to be an absolute double-framed fuzzy soft set, if for all e ε A , 
F(e) = DFFU. 
 
2.16 Definition[23]: The complement of a double-framed fuzzy soft set (F,A) is denoted (F,A)c and is denoted by (F,A)c = { (x, 1- 
μA

+ (x), 1- μA
-(x) ; x ε U}. 

 
3. Double-framed fuzzy soft G-modules and Ideals 
 
3.1 Definition: A double-framed fuzzy soft set A (μA, νA) of S is called a double-framed fuzzy soft G-modules (DFFSGM)  of S 
provided that for all x,y,z,a,b ε S; 
 
(DFFSGM-1) μA(ax+by) ≥  min { μA(x), μA(y) }, νA(ax+by) ≤ max { νA(x), νA(y) }, 
(DFFSGM-2))  μA(αx ) ≥  μA(x),  ,  νA(αx) ≤   νA(y) } 
 
3.2 Definition: A double-framed fuzzy set ‘A’ in X is called a  double-framed fuzzy soft d-ideal (DFFSDI) of X if it satisfies; 
(DFFSDI1) μA(x)   ≥ T{ μA(ax+by), μA(y)}  
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(DFFSDI2) νA(x)   ≤ S{ μA(ax+by), μA(y)}  
(DFFSDI3) μA(e)   ≥  νA(x)  and   μA(e)  ≥  νA(x)  and    for all x,y ε X. 
 
3.3 Definition: Let λ and μ be two  fuzzy subsets in X.  The Cartesian Product of λ×μ: X × X   [0,1] is defined by λ×μ(x,y) = T{ 
λ(x), μ(y)}  and  λ×μ : X × X  [0,1] is defined by λ×μ (x,y) =    S{ λ (x), μ(y)} for all x,y ε X. 
 
3.4 Definition: Let f : X  Y be a mapping of modules and ‘μ’ be a double-framed fuzzy  soft set of y.  The map μf is the pre  
image of  μ1 and μ2 under f. so μ1

f(x) = μf(x),  μ2
f(x) = μf(x)  

 
3.5 Definition: Let ‘A’ be a double-framed fuzzy soft set in a X, the strongest (ψ, χ )- double-framed fuzzy soft relation on X that 
is fuzzy relation on A is μA given by, 
 
μA(x,y) ∩ ψ =T{A(x), A(y)} ν χ 
 
νA(x,y) ∩ ψ =S{A(x), A(y)} ν χ for all x,y ε X. 
 

4. MAIN RESULTS 
 
4.1 Proposition : If  is a (ψ, χ )- double-framed fuzzy group of X, then μφ(e) ∩ ψ ≥ μφ(x) ν χ and     μφ(e) ∩ ψ ≤ μφ(x) ν χ for all x 
ε X. 
 
Proof: Let x ε X, then 
 
μφ(e) ∩ ψ = μφ(x x-1) ∩ ψ ≥ T { μφ(x), μφ(x-1)} ν χ≥ T { μφ(x), μφ(x)} ν χ  ≥ μφ(x) ν χand  μφ(e) ∩ ψ = μφ(x x-1) ∩ ψ ≤  S { μφ(x), 
μφ(x-1)} ν χ ≤ S { μφ(x), μφ

-(x)} ν χ  ≤ μφ(x) ν χ 
 
This completes the proof. 
 
4.2. Proposition: Let ‘’ be a (ψ, χ)- double-framed fuzzy group of X, then the following assertations are valid. 
 

(i) ( α ε [0,1] (α
      t is a group of X) 

(ii) ( β ε [1,0] (β
      β is a group of X) 

 
Proof: Let t ε [0,1] be such that   t

   .  If x,y ε t
 , then μ(x) ∩ ψ  ≥ t ν χ and  μ

+(y) ∩ ψ ≥ t ν χ.  It follows that μ(xy)  ) ∩ ψ  ≥ 
T { μ(x), μ(y)} ν χ ≥ t ν χ 
 

4.3 Corollary: If   is a(ψ, χ ) - double-framed fuzzy group of X, then the sets μφ(e) and    μφ(e) are group of X. 
 

Proof: Straight forward. 
 

4.4 Proposition: Let  = (X, μ, μ ) be a (ψ, χ )- double-framed fuzzy d-ideal of X.  If the inequality xy ≤ z holds in X, then μ(x) 
∩ ψ ≥ T { μ(y), μ(z) } ν χ μ(x) ∩ ψ ≤  S { μ(y), μ(z) } ν χ 
 
 Proof:  Let x, y, z ε X be such that xy ≤ z, then (xy)z = 0, and so μ(x) ∩ ψ ≥ T { μ(xy), μ(y)} ν χ ≥ T {T { μ(xy)z, μ(z)}, 
μ(y) } ν χ  = T {T { μ(e), μ(z)}, μ(y)} ν χ = T { μ(y), μ(z) } ν χ and μ(x) ∩ ψ ≤ S { μ(xy), μ(y)} ν χ ≤ S {S { μ(xy)z, 
μ(z)}, μ(y) } ν χ 
 
= S {S { μ(e), μ(z)}, μ(y)} ν χ = S { μ(y), μ(z) } ν χ 
 
This completes the proof. 
 
4.5 Proposition: Let  be a(ψ, χ ) - double-framed fuzzy d-ideal of X.  If the inequality x≤y holds in X, then μ(x) ∩  ψ ≥ μ(y) ν χ 
and μ(x) ∩ ψ ≤ μ(y) ν χ. 
 
Proof: Let x, y ε X be such that x ≤ y, then μ

+(x) ∩ ψ ≥ T { μ
+(xy), μ

+(y)} ν χ  = T{ μ(e), μ(y)} ν χ = μ(y) ν χ   μ(x) ∩ ψ ≤ 
S { μ(xy), μ(y)} ν χ  
 
= T{ μ(e), μ(y)} ν χ = μ(y) ν χ 
 
This completes the proof. 
 
4.6 Proposition: In a group X, every (ψ, χ )- double-framed fuzzy d-ideal of X is (ψ, χ )- double-framed fuzzy group of X. 
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Proof: Let ‘’ be a(ψ, χ ) double-framed fuzzy d-ideal of a group X.  Since xy ≤ x for all x,y ε X, it follows from Proposition 4.5 
that μ(xy) ∩ ψ ≥ T { μ(x) and μ(x) ∩  ψ ≤ μ(x) ν χ ,   so from Proposition 3.1  
 
(DFFSG1)  μ(xy) ∩ ψ ≥ T { μ(x) ν χ ≥T{μ(xy),μ(y)} ν χ   = T{ μ(x), μ(y)} ν χ  and (DFFSG2) μ(xy) ∩ ψ ≤ μ(x) ν χ ≤ S { 
μ(xy), μ(y)} ν χ  ≤ S{ μ(x), μ(y)} ν χ 
 
μ(x

-1)  ∩ ψ ≥ T {μ(xy), μ(x)} ν χ  = T{ μ(e), μ(y)} ν χ ≥ μ(x) ν χ  μ(x
-1) ∩ ψ ≤ S { μ(xy), μ(y)} ν χ  ≤ S{ μ(e), μ(y)} ν χ ≤ 

μ(x) ν χ.  Hence  is (ψ, χ )- double-framed fuzzy soft group.  The converse of the theorem is not true in general. 
 
4.7. Proposition: Let ‘’ be a (ψ, χ ) - double-framed fuzzy soft group of a group X such that Proposition 4.2 holds for all x, y, z ε 
X satisfying the inequality xy ε z then  is a   (ψ, χ )- double-framed fuzzy d-ideal of X. 
 
Proof:  Recall from Proposition 4.1; that μφ(e) ∩ ψ ≥ μφ(x) ν χ   and μφ(e) ∩ ψ ≤ μφ(x) ν χ   for all x ε X.  Since x (xy) ≤ y for all x, 
y  ε X, it follows that Proposition 4.2,         
             
μ(x) ∩ ψ ≥ T { μ(xy), μ(y)} ν χ and 
μ(x) ∩ ψ ≤ S { μ(xy), μ(y)} ν χ 
 
Hence  is a (ψ, χ )- double-framed fuzzy soft d-ideal of X. 
 
4.8. Proposition: Let λ and μ be (ψ, χ )- double-framed fuzzy soft d-ideal of X, then λ×μ is also   (ψ, χ )- double-framed fuzzy soft 
d-ideal of X. 
 
Proof: For any (x1, x2), (y1, y2) ε X × X, we have (BFd1) (λ × μ) (x1, x2) ∩ ψ = T {λ(x1), μ(x2) } ∩ ψ 
 
≥ T { T{ λ(x1, y1), λ(y1)}, T{μ (x2, y2), μ(y2)} } ν χ 
= T { T{ λ (x1, y1), μ (x2, y2)}, T{λ(y1), μ(y2)} } ν χ 
= T{(λ × μ) ((x1, x2), (y1, y2)} ν χ 
(λ×μ) (x1, x2) ∩ ψ = S{λ(x1), μ(x2)} ∩ ψ  
 ≤ S{ S{λ(x1,y1), λ(y1)}, S{ μ(x2,y2), μ(y2)} ν χ 
= S{ S{λ(x1,y1), μ(x2,y2)}, S{ λ(y1), μ(y2)} ν χ 
= S{ (λ×μ) (x1, x2) (y1, y2), (λ×μ)(y1, y2)} ν χ 
(λ×μ) (x1

-1, x2
-1) ∩ ψ 

= T{λ(x1
-1), μ(x2

-1)} ∩ ψ ≥T{ T{λ(x1,y1), λ(y1)}, T{ μ(x2,y2), μ(y2)} ν χ 
= T{ T{λ(x1,y1), μ(x2,y2)}, T{ λ(y1), μ(y2)} ν χ  
= T{ (λ×μ) (x1, x2) (y1, y2), (λ×μ)(y1, y2)} ν χ 
(λ×μ) (x1

-1, x2
-1)  ∩ ψ = S{λ(x1

-1), λ(x2
-1)} ∩ ψ 

≤ S{ S{λ(x1,y1), λ(y1)}, S{ μ(x2,y2), μ(y2)} ν χ 
= S{ S{λ(x1,y1), μ(x2,y2)}, S{ λ(y1), μ(y2)} ν χ 
≤ S{ (λ×μ) (x1, x2, y1, y2), (λ×μ)(y1, y2)} ν χ 
 
Hence λ×μ is (ψ, χ )- double-framed fuzzy soft d-ideal of X. 
 
4.9 Proposition: Let f : X  Y be a homomorphism of groups.  If ‘μ’ is a (ψ,χ )- double-framed fuzzy softd-ideal of y, then μf is 
(ψ, χ )- double-framed fuzzy soft  d-ideal of X. 
 
Proof: For any x ε X, we have 
 
μf(x) ∩ ψ = μ(f(x)) ∩ ψ ≥ μ(e) ν χ = μ(f(e)) ν χ = μf(e) ν χ 
μf(x)  ∩ ψ = μ(f(x))  ∩ ψ ≤ μ(e) ν χ = μ(f(e)) ν χ =    μf(e) ν χ 

Let x, y ε X 
 
T{ μf(xy), μf(y) }∩ ψ =  T{μ(f(xy), μ(f(y) }∩ ψ = T{μ(f(x).f(y)), μ(f(y)} ∩ ψ   ≤ μf(x) ν χ = μf(x). ν χ 
S{μf(xy), μf(y)} ∩ ψ = S { μf(xy), μ(f(x)} ∩ ψ = S { μ(f(x),f(x)), μ(f(x) }∩ ψ   ≥ μ(f(x) ν χ = μf(x) ν χ 
     
Hence μf is(ψ,χ )- double-framed fuzzy soft d-ideal of X. 
 
4.10. Proposition: Let f : X  Y be an epimorphism of groups.  If μf is (ψ, χ )- double-framed fuzzy soft d-ideal of X, then μ(ψ, χ 
) - double-framed fuzzy soft d-ideal of Y. 
 
Proof:  Let y ε Y, there exists x ε X such that f(x) = y, then 
 
μ(y) ∩ ψ = μ(f(x))  ∩ ψ = μf(x)  ∩ ψ ≤ μf(e) ν χ = μ(f(e) ν χ = μ(e) ν χ 
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μ(y)  ∩ ψ = μ(f(x))  ∩ ψ = μf(x) ∩ ψ ≥ μf(e) ν χ = μ(f(e) ν χ = μ(e) ν χ 
Let x, y ε Y, then there exists a, b ε X, such that f(a) = x and f(b) = y.  It follows that 
μ(x) ∩ ψ  = μ(f(a) ∩ ψ = μf(a) ν χ  and  μ(x) ∩ ψ = μ(f(a) ∩ ψ = μf(a) ν χ 
≥ T{ μf(ab), μf(b)} ν χ = T{ μ(f(ab), μ(f(b)} ν χ = T{ μ(f(a).f(b)), μ(f(b)} ν χ 
= T{ μ(xy), μ(y)} ν χ 
 
Also 
 
≤ S{ μf(ab), μf(b)} ν χ = S{ μ(f(ab), μ(f(b)} ν χ = S{ μ(f(a).f(b)), μ(f(b)} ν χ 
= S{ μ(xy), μ(y)} ν χ 
 
Hence μ is a(ψ,χ ) - double-framed fuzzy soft d-ideal of y. 
 
4.11 Proposition: Let ‘A’ be a double-framed fuzzy soft set in a group X and μA be the strongest (ψ, χ )- double-framed fuzzy soft 
relation on X, then A is a (ψ, χ )- double-framed fuzzy soft d-ideal of X if and only if μA is a (ψ, χ )- double-framed fuzzy soft d-
ideal of X × X. 
 
Proof: Suppose that ‘A’ is a(ψ, χ ) - double-framed fuzzy soft d-ideal of X, then 
 
μA(e, e) ∩ ψ = T { A(e), A(e)} ∩  ψ 
 
≥ T { A+(x), A+(y)} ν χ = μA

+(x, y) ν χ for all (x, y) ε X × X. 
 
μA(e, e) ∩ ψ = S { A(e), A(e)} ∩  ψ ≤  S { A(x), A(y)} ν χ = μA(x, y) ν χ for all (x, y) ε X × X. 
For any x = (x1, x2) and  
 
y = (y1, y2) ε X × X. 
 
μA(x) ∩ ψ = μA(x1, x2) ∩ ψ 
=  T { A(x1), A(x2)} ∩  ψ ≥T{T{A(x1,y1), A(y1)}, T{A(x2, y2), A(y2)} } ν χ 
= T{ T{A(x1, y1), A(x2, y2)}, T{A(y1), A(y2) } } ν χ 
=  T{ μA(x1, y1), (x2, y2)), μA(y1, y2)} ν χ =  T{ μA(xy), μA(y)} ν χ 
 
μA

-(x) ∩ ψ = μA
-(x1, x2) ∩ ψ  

 
=  S { A(x1), A(x2)}  ∩  ψ ≤ S{S{A(x1, y1), A(y1)}, S{A(x2, y2), A(y2)} } ν χ 
= S{S{A(x1, y1), A(x2, y2)}, S{A(y1), A(y2) } } ν χ 
= S{ μA(x1, y1), (x2, y2)), μA(y1, y2)} ν χ = S{ μA(xy), μA(y)} ν χ 
 
Hence μA is a (ψ, χ )- double-framed fuzzy soft d-ideal of X × X.  Conversely, suppose that μA is a (ψ, χ )- double-framed r fuzzy 
soft d-ideal of X × X. Then, 
 
T {A+(e), A+(e)} ∩ ψ = μA

+(e, e) ∩ ψ 
≥ μA(x, y) ν χ = T{A(x), A(y)} ν χ (x, y) ε X × X. 
S { A(e), A(e)} ∩ ψ = μA(e, e) ∩ ≤ μA(x, y) ν χ = S { A(x), A(y)} ν χ  
for any x = (x1, y1) and  
 
y = (y1, y2)  ε X × X., we have 
 
T{A(x1), A(x2)} ∩ ψ =  μA(x1, x2) ∩ ≥  T{μA((x1, x2), (y1, y2)), μA(y1, y2)} ν χ 
=  T{μA(x1y1, x2y2)), μA(y1, y2)} ν χ =  T{ T{A(x1, y1), A(x2, y2)}, T{A(y1), A(y2)} ν χ 
=  T{ T{ A(x1, y1), A(y1), T{A(x2, y2), A(y2)} ν χ 
 
Putting x1 = x2 = 0, we have 
 
μA(x1) ∩ ψ ≥ T{μA(x1, y1), μA(y1)} ν χ 
Likewise, μA(x1y1)  ≥ T{μA(x1), μA(x2)} 
S{A(x1), A(x2)} ∩ ψ =  μA(x1, x2) ν χ ≤  S{μA((x1, x2), (y1, y2)), μA(y1, y2)} ν χ 
=  S{μA(x1y1, x2y2)), μA(y1, y2)} ν χ =  S{ S{A(x1, y1), A(x2, y2)}, S{A(y1), A(y2)} ν χ 
=  S{ S{ A(x1, y1), A(y1), S{A(x2, y2), A(y2)} ν χ 
Putting x1 = x2 = 0, we have 
μA(x1) ∩ ψ ≤ S{μA(x1, y1), μA(y1)} ν χ  
Likewise, μA(x1y1) ∩ ψ ≤ S{μA(x1), μA(x2)} ν χ.  
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Hence A is a (ψ, χ )- double-framed fuzzy  soft d-ideal of X. 
 
4.12 Proposition: Let  be a double-framed fuzzy soft set in X, then  is a(ψ, χ ) - double-framed fuzzy soft d-ideal of X if and 
only if it satisfies the following assertations. 
( α ε [0,1] (t

      t is an ideal of X) 
( β ε [1,0] (s

      β is an ideal of X) 
 
Proof: Assume that  is a(ψ, χ )- double-framed fuzzy soft d-ideal of X.   Let (s,t) ε [1, 0] ε [0,1] be such that   t

    and s
-  .   

Obviously, e ε t
+  s

- . 
 
Let x, y ε X be such that xy ε t

  and y ε t
 , and  

Let a, b ε X be such that abεs
 and b ε s , then  

 
μ(xy) ∩ ψ ≥ t ν χ,   μ(y) ∩ ψ ≥ t ν χ, μ(ab) ∩ ψ ≤ s ν χ and μ(b) ∩ ψ ≤ s ν χ. 
It follows from Proposition 3.1 
 

μ(x) ∩ ψ ≥ T { μ(xy), μ(y)} ≥ t ν χ  and 
 

μ(a) ∩ ψ ≤  S { μ(ab), μ(b) ≤ s ν χ so that x ε t
+ and a ε s

-.  Therefore   t
+ and s

- are ideals of X. 
 

Conversely, suppose that the condition (corollary) is valid.  For any x ε X, let μφ(x) ∩ ψ = t ν χ and μφ(x) ∩ ψ = s ν χ, then x ε t 
s

 , and so t
 and s

 are non-empty.  Since t
 and s are ideal of X, e ε t

  s
- .  Hence μ(e) ∩ ψ ≥ t ν χ    = μ(x) ν χ and  μ(e) ∩ ψ 

≤ s ν χ = μ(x) ν χ for all x ε X. 
 
If there exists x1, y1, a1, b1 ε X such that μ(x

1) ∩ ψ ≤ T{ μ(x
1y1), μ(y

1)} ν χ 
 
and μ(a

1) ∩ ψ ≥ S{ μ(a
1b1), μ(b

1)} ν χ then by taking 
 
t0 = ½ { μ(x

1) + T{ μ(x
1y1), μ(y

1)} 
S0 = ½ { μ(a

1) + S{ μ(a
1b1), μ(b

1)} 
 
We have, 
 
μ(x

1) ∩ ψ < t0 ≤  T{ μ(x
1y1), μ(y

1)} ν χ 
μ(a

1) ∩ ψ < s0 ≤  S{μ(a
1b1), μ(b

1)} ν χ 
 
Hence x1 t0, x

1, y1 ε t0, y
1 ε t0, a

1  s0 and b1 ε s0.  This is a contradiction and thus  is a(ψ, χ )- double-framed fuzzy soft d-
ideal of X. 
 
Conclusion 
 
This paper is devoted to discussion of combination of soft set theory, set theory and G-module theory. Based on the definition, we 
have introduced the concepts of double-framed soft  G-modules and double-framed soft  d-ideals with illustrative examples. Also 
we analyse strongest double-framed fuzzy relations on double-framed fuzzy soft d-ideals of a module and discuss some related 
properties. 
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