
 
         
                            
 
 

 

 
 

 
 
 

 

RESEARCH ARTICLE 
 

DEEP LEARNING-AN UPCOMING TECHNOLOGY 
 

1Krupa, T. K. and 2Venkatagiri, J.  
 

1Assistant Professor, Computer Science and Engineering, Sri Venkateshwara College of Engineering, Bangalore, 
Karnataka, India 

2UG Student, Computer Science and Engineering, Sri Venkateshwara College of Engineering,Bangalore, 
Karnataka, India 

 
 

 

 ARTICLE INFO    ABSTRACT 
 

 

Deep learning allows computational models that are composed of multiple processing layers to learn 
representations of data with multiple levels of abstraction. These methods have dramatically improved 
the state-of-the-art in speech recognition, visual object recognition, object detection and many other 
domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data 
sets by using the backpropagation algorithm to indicate how a machine should change its internal 
parameters that are used to compute the representation in each layer from the representation in the 
previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, 
speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. 
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INTRODUCTION 
 

Machine-learning technology powers many aspects of modern 
society: from web searches to content filtering on social 
networks to recommendations on e-commerce websites, and it 
is increasingly present in consumer products such as cameras 
and smartphones. Machine-learning systems are used to 
identify objects in images, transcribe speech into text, match 
news items, posts or products with users’ interests, and select 
relevant results of search. Increasingly, these applications 
make use of a class of techniques called deep learning. 
Conventional machine-learning techniques were limited in 
their ability to process natural data in their raw form. For 
decades, constructing a pattern-recognition or machine-
learning system required careful engineering and considerable 
domain expertise to design a feature extractor that transformed 
the raw data (such as the pixel values of an image) into a 
suitable internal representation or feature vector from which 
the learning subsystem, often a classifier, could detect or 
classify patterns in the input. Representation learning is a set 
of methods that allows a machine to be fed with raw data and 
to automatically discover the representations needed for 
detection or classification.  
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Deep-learning methods are representation-learning methods 
with multiple levels of representation, obtained by composing 
simple but non-linear modules that each transform the 
representation at one level (starting with the raw input) into a 
representation at a higher, slightly more abstract level. 
 

Supervised Learning  
 
The most common form of machine learning, deep or not, is 
supervised learning. Imagine that we want to build a system 
that can classify images as containing, say, a house, a car, a 
person or a pet. We first collect a large data set of images of 
houses, cars, people and pets, each labelled with its category. 
During training, the machine is shown an image and produces 
an output in the form of a vector of scores, one for each 
category. We want the desired category to have the highest 
score of all categories, but this is unlikely to happen before 
training. We compute an objective function that measures the 
error (or distance) between the output scores and the desired 
pattern of scores. The machine then modifies its internal 
adjustable parameters to reduce this error. These adjustable 
parameters, often called weights, are real numbers that can be 
seen as ‘knobs’ that define the input–output function of the 
machine. In a typical deep-learning system, there may be 
hundreds of millions of these adjustable weights, and hundreds 
of millions of labelled examples with which to train the 
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Machine. To properly adjust the weight vector, the learning 
algorithm computes a gradient vector that, for each weight, 
indicates by what amount the error would increase or decrease 
if the weight were increased by a tiny amount. The weight 
vector is then adjusted in the opposite direction to the gradient 
vector. The objective function, averaged over all the training 
examples, can be seen as a kind of hilly landscape in the high
dimensional space of weight values. 
 

 
Fig. 1. Deep learning representation

 
The negative gradient vector indicates the direction of steepest 
descent in this landscape, taking it closer to a minimum, where 
the output error is low on average. In practice, most 
practitioners use a procedure called stochastic gradient descent 
(SGD). This consists of showing the input vector for a few 
examples, computing the outputs and the errors, computing the 
average gradient for those examples, and adjusting the weights 
accordingly. The process is repeated for many small sets of 
examples from the training set until the average of the 
objective function stops decreasing. It is called stochastic 
because each small set of examples gives a noisy estimate of 
the average gradient over all examples. This simple procedure 
usually finds a good set of weights surprisingly quickly when 
compared with far more elaborate optimization techniques18. 
After training, the performance of the system is measured on a 
different set of examples called a test set.  
 

 
Fig. 2. Deep learning a breakthrough technology
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rning a breakthrough technology 

This serves to test the generalization ability of the machine 
its ability to produce sensible answers on new inputs that it has 
never seen during training. 
 
Back propagation to train multilayer 
 

From the earliest days of pattern recognition22, 23, the aim of 
researchers has been to replace hand
trainable multilayer networks, but despite its simplicity, the 
solution was not widely understood until the 
turns out, multilayer architectures can be trained by simp
stochastic gradient descent. 
relatively smooth functions of their inputs and of their internal 
weights, one can compute gradients using the backpropaga
procedure. The idea that this could be done, and that it worked, 
was discovered independently by several different groups 
during the 1970s and 1980s2
procedure to compute the gradient of an objective function 
with respect to the weights of a multilayer stack of modules is 
nothing more than a practical application of the chain Rule for 
derivatives. The key insight is that the derivative (or gradient) 
of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with 
respect to the output of that module (or the input of the 
subsequent module). The back
applied repeatedly to propagate gradients through all modules, 
starting from the output at the top (where
produces its prediction) all the way to the bottom (where the 
external input is fed). Once these gradients have been 
computed, it is straightforward to compute the gradients with 
respect to the weights of each module. Many applications of 
deep learning use feed forward neural network architectures, 
which learn to map a fixed-size input (for example, an image) 
to a fixed-size output (for example, a probability for each of 
several categories). To go from one layer to the next, a set of 
units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non
function. At present, the most popular non
the rectified linear unit (ReLU), which is simply the half
rectifier f (z) = max (z, 0). In past decades, neural nets used 
smoother non-linearities, such as tanh(z) or 1/(1 + exp(
but the ReLU typically learns much faster in networks with 
many layers, allowing training of a deep supervised network 
without unsupervised pre-training28. Unit
input or output layer are conventionally called hidden units.
 
The hidden layers can be seen as distorting the input in a non
linear way so that categories become linearly separable by the 
last layer. In the late 1990s, neural nets an
were largely forsaken by the machine
ignored by the computer-vision and speech
communities. It was widely thought that learning useful, 
multistage, feature extractors with little prior knowledge was 
infeasible. In particular, it was commonly thought that simple 
gradient descent would get trapped in poor local minima 
weight configurations for which no small change would reduce 
the average error. In practice, poor local minima are rarely a 
problem with large networks. Regardless of the initial 
conditions, the system nearly always reaches solutions of very 
similar quality. Recent theoretical and empirical results 
strongly suggest that local minima are not a serious issue in 
general. Instead, the landscape i
combinatorially large number of saddle points where the 
gradient is zero, and the surface curves up in most dimensions 
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and curves down in the remainder29, 30. The analysis seems 
to show that saddle points with only a few downward curving 
directions are present in very large numbers, but almost all of 
them have very similar values of the objective function. 
Hence, it does not much matter which of these saddle points 
the algorithm gets stuck at. Interest in deep feedforward 
networks was revived around 2006 by a group of researchers 
brought together by the Canadian Institute for Advanced 
Research (CIFAR). 
 

 
                          

Fig. 3. Layers, inputs and outputs processing in deep learning 
layers 

 
Convolutional neural Networks 
 
ConvNets are designed to process data that come in the form 
of multiple arrays, for example a colour image composed of 
three 2D arrays containing pixel intensities in the three colour 
channels. Many data modalities are in the form of multiple 
arrays: 1D for signals and sequences, including language; 2D 
for images or audio spectrograms; and 3D for video or 
volumetric images. There are four key ideas behind ConvNets 
that take advantage of the properties of natural signals: local 
connections, shared weights, pooling and the use of many 
layers. The architecture of a typical ConvNet  is structured as a 
series of stages. The first few stages are composed of two 
types of layers: convolutional layers and pooling layers. Units 
in a convolutional layer are organized in feature maps, within 
which each unit is connected to local patches in the feature 
maps of the previous layer through a set of weights called a 
filter bank. The result of this local weighted sum is then passed 
through a non-linearity such as a ReLU. All units in a feature 
map share the same filter bank. Different feature maps in a 
layer use different filter banks. The reason for This 
architecture is twofold. First, in array data such as images, 
local groups of values are often highly correlated, forming 
distinctive local motifs that are easily detected. Second, the 
local statistics of images and other signals are invariant to 
location. In other words, if a motif can appear in one part of 
the image, it could appear anywhere, hence the idea of units at 
different locations sharing the same weights and detecting the 
same pattern in different parts of the array. Mathematically, 
the filtering operation performed by a feature map is a discrete 
convolution, hence the name. Although the role of the 
convolutional layer is to detect local conjunctions of features 
from the previous layer, the role of the pooling layer is to 
merge semantically similar features into one. Because the 
relative positions of the features forming a motif can vary 
somewhat, reliably detecting the motif can be done by coarse-
graining the position of each feature. A typical pooling unit 
computes the maximum of a local patch of units in one feature 
map (or in a few feature maps). Neighboring pooling units take 
input from patches that are shifted by more than one row or 
column, thereby reducing the dimension of the representation 
and creating an invariance to small shifts and distortions. 

 
 

Fig. 4. Convolutional neural networks 
 
Image understanding with deep convolutional networks 
 
Since the early 2000s, ConvNets have been applied with great 
success to the detection, segmentation and recognition of 
objects and regions in images. These were all tasks in which 
labelled data was relatively abundant, such as traffic sign 
recognition, the segmentation of biological images particularly 
for connectomics, and the detection of faces, text, pedestrians 
and human bodies in natural images. A major recent practical 
success of ConvNets is face recognition. Importantly, images 
can be labelled at the pixel level, which will have applications 
in technology, including autonomous mobile robots and self-
driving cars. Companies such as Mobileye and NVIDIA are 
using such ConvNet-based methods in their upcoming vision 
systems for cars. Other applications gaining importance 
involve natural language understanding14 and speech 
recognition7. Despite these successes, ConvNets were largely 
forsaken by the mainstream computer-vision and machine-
learning communities until the Image Net competition in 2012. 
When deep convolutional networks were applied to a data set 
of about a million images from the web that contained 1,000 
different classes, they achieved spectacular results, almost 
halving the error rates of the best competing approaches1. This 
success came from the efficient use of GPUs, ReLUs, a new 
regularization technique called dropout62, and techniques to 
generate more training examples by deforming the existing 
ones. This success has brought about a revolution in computer 
vision; ConvNets are now the dominant approach for almost 
all recognition and detection tasks4 and approach human 
performance on some tasks. A recent stunning demonstration 
combines ConvNets and recurrent net modules for the 
generation of image captions Recent ConvNet architectures 
have 10 to 20 layers of ReLUs, hundreds of millions of 
weights, and billions of connections between units. Whereas 
training such large networks could have taken weeks only two 
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years ago, progress in hardware, software and algorithm 
parallelization have reduced training times to a few hours. The 
performance of ConvNet-based vision systems has caused 
most major technology companies, including Google, 
Facebook, Microsoft, IBM, Yahoo!, Twitter and Adobe, as 
well as a quickly growing number of start-ups to initiate 
research and development projects and to deploy ConvNet-
based image understanding products and services. ConvNets 
are easily amenable to efficient hardware implementations in 
chips or field-programmable gate arrays. A number of 
companies such as NVIDIA, Mobileye, Intel, Qualcomm and 
Samsung are developing ConvNet chips to enable real-time 
vision applications in smartphones, cameras, robots and self-
driving cars. 
 
Distributed representations and language processing 
 
Deep-learning theory shows that deep nets have two different 
exponential advantages over classic learning algorithms that 
do not use distributed representations21. Both of these 
advantages arise from the power of composition and depend 
on the underlying data-generating distribution having an 
appropriate componential structure40. First, learning 
distributed representations enable generalization to new 
combinations of the values of learned features beyond those 
seen during training (for example, 2n combinations are 
possible with n binary features) 68, 69. Second, composing 
layers of representation in a deep net brings the potential for 
another exponential advantage70 (exponential in the depth). 
The hidden layers of a multilayer neural network learn to 
represent the network’s inputs in a way that makes it easy to 
predict the target outputs. This is nicely demonstrated by 
training a multilayer neural network to predict the next word in 
a sequence from a local context of earlier words71. Each word 
in the context is presented to the network as a one-of-N vector, 
that is, one component has a value of 1 and the rest are 0. In 
the first layer, each word creates a different pattern of 
activations, or word vectors (Fig. 4). In a language model, the 
other layers of the network learn to convert the input word 
vectors into an output word vector for the predicted next word, 
which can be used to predict the probability for any word in 
the vocabulary to appear as the next word. The network learns 
word vectors that contain many active components each of 
which can be interpreted as a separate feature of the word, as 
was first demonstrated27 in the context of learning distributed 
representations for symbols. These semantic features were not 
explicitly present in the input.  
 
They were discovered by the learning procedure as a good way 
of factorizing the structured relationships between the input 
and output symbols into multiple ‘micro-rules’. Learning word 
vectors turned out to also work very well when the word 
sequences come from a large corpus of real text and the 
individual micro-rules are unreliable71. When trained to 
predict the next word in a news story, for example, the learned 
word vectors for Tuesday and Wednesday are very similar, as 
are the word vectors for Sweden and Norway. Such 
representations are called distributed representations because 
their elements (the features) are not mutually exclusive and 
their many configurations correspond to the variations seen in 
the observed data. These word vectors are composed of 
learned features that were not determined ahead of time by 
experts, but automatically discovered by the neural network. 
Vector representations of words learned from text are now 

very widely used in natural language applications. The issue of 
representation lies at the heart of the debate between the logic-
inspired and the neural-network-inspired paradigms for 
cognition. In the logic-inspired paradigm, an instance of a 
symbol is something for which the only property is that it is 
either identical or non-identical to other symbol instances. It 
has no internal structure that is relevant to its use; and to 
reason with symbols, they must be bound to the variables in 
judiciously chosen rules of inference. By contrast, neural 
networks just use big activity vectors, big weight matrices and 
scalar non-linearities to perform the type of fast ‘intuitive’ 
inference that underpins effortless commonsense reasoning. 
Before the introduction of neural language models71, the 
standard approach to statistical modelling of language did not 
exploit distributed representations: it was based on counting 
frequencies of occurrences of short symbol sequences of 
length up to N (called N-grams). The number of possible N-
grams is on the order of VN, where V is the vocabulary size, 
so taking into account a context of more than a handful of 
work. 
 

Recurrent Neural Networks 
 
When backpropagation was first introduced, it’s most exciting 
use was for training recurrent neural networks (RNNs). For 
tasks that involve sequential inputs, such as speech and 
language, it is often better to use RNNs. RNNs process an 
input sequence one element at a time, maintaining in their 
hidden units a ‘state vector’ that implicitly contains 
information about the history of all the past elements of the 
sequence. When we consider the outputs of the hidden units at 
different discrete time steps as if they were the outputs of 
different neurons in a deep multilayer network. it becomes 
clear how we can apply backpropagation to train RNNs. RNNs 
are very powerful dynamic systems, but training them has 
proved to be problematic because the back propagated 
gradients either grow or shrink at each time step, so over many 
time steps they typically explode or vanish77,78. Thanks to 
advances in their architecture79, 80 and ways of training them, 
RNNs have been found to be very good at predicting the next 
character in the text83 or the next word in a sequence, but they 
can also be used for more complex tasks. For example, after 
reading an English sentence one word at a time, an English 
‘encoder’ network can be trained so that the final state vector 
of its hidden units is a good representation of the thought 
expressed by the sentence. This thought vector can then be 
used as the initial hidden state of (or as extra input to) a jointly 
trained French ‘decoder’ network, which outputs a probability 
distribution for the first word of the French translation. If a 
particular first word is chosen from this distribution and 
provided as input to the decoder network it will then output a 
probability distribution for the second word of the translation 
and so on until a full stop is chosen. Overall, this process 
generates sequences of French words according to a 
probability distribution that depends on the English sentence. 
This rather naive way of performing machine translation has 
quickly become competitive with the state-of-the-art, and this 
raises serious doubts about whether understanding a sentence 
requires anything like the internal symbolic expressions that 
are manipulated by using inference rules. It is more compatible 
with the view that everyday reasoning involves many 
simultaneous analogies that each contribute plausibility to a 
conclusion. Instead of translating the meaning of a French 
sentence into an English sentence, one can learn to ‘translate’ 
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the meaning of an image into an English sentence. The 
encoder here is a deep ConvNet that converts the pixels into an 
activity vector in its last hidden layer. The decoder is an RNN 
similar to the ones used for machine translation and neural 
language modelling. There has been a surge of interest in such 
systems recently (see examples mentioned in ref.). RNNs, 
once unfolded in time, can be seen as very deep feedforward 
networks in which all the layers share the same weights. 
 
Future of deep learning 
 
Unsupervised learning had a catalytic effect in reviving 
interest in deep learning, but has since been overshadowed by 
the successes of purely supervised learning. Although we have 
not focused on it in this Review, we expect unsupervised 
learning to become far more important in the longer term. 
Human and animal learning is largely unsupervised: we 
discover the structure of the world by observing it, not by 
being told the name of every object. Human vision is an active 
process that sequentially samples the optic array in an 
intelligent, task-specific way using a small, high-resolution 
fovea with a large, low-resolution surround. We expect much 
of the future progress in vision to come from systems that are 
trained end-toend and combine ConvNets with RNNs that use 
reinforcement learning to decide where to look. Systems 
combining deep learning and reinforcement learning are in 
their infancy, but they already outperform passive vision 
systems99 at classification tasks and produce impressive 
results in learning to play many different video games. Natural 
language understanding is another area in which deep learning 
is poised to make a large impact over the next few years. We 
expect systems that use RNNs to understand sentences or 
whole documents will become much better when they learn 
strategies for selectively attending to one part at a time. 
Ultimately, major progress in artificial intelligence will come 
about through systems that combine representation learning 
with complex reasoning. Although deep learning and simple 
reasoning have been used for speech and handwriting 
recognition for a long time, new paradigms are needed to 
replace rule-based manipulation of symbolic expressions by 
operations on large vectors. 
 
Conclusion 
 
Deep learning = Learning Hierarchical Representations  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deep learning is thriving in big data analytics, including image 
processing, speech recognition, and natural language 
processing. 
 
Deep learning has matured and is very promising as an 
artificial intelligence method. 
 
Still has room for improvement: Scaling computation 
 
Optimization 
Bypass intractable marginalization 
More disentangled abstractions 
Reasoning from incrementally added facts. 
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