

RESEARCH ARTICLE

DEEP LEARNING-AN UPCOMING TECHNOLOGY

1Krupa, T. K. and 2Venkatagiri, J.

1Assistant Professor, Computer Science and Engineering, Sri Venkateshwara College of Engineering, Bangalore,
Karnataka, India

2UG Student, Computer Science and Engineering, Sri Venkateshwara College of Engineering,Bangalore,
Karnataka, India

 ARTICLE INFO ABSTRACT

Deep learning allows computational models that are composed of multiple processing layers to learn
representations of data with multiple levels of abstraction. These methods have dramatically improved
the state-of-the-art in speech recognition, visual object recognition, object detection and many other
domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data
sets by using the backpropagation algorithm to indicate how a machine should change its internal
parameters that are used to compute the representation in each layer from the representation in the
previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video,
speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

Copyright©2017, Krupa and Venkatagiri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Machine-learning technology powers many aspects of modern
society: from web searches to content filtering on social
networks to recommendations on e-commerce websites, and it
is increasingly present in consumer products such as cameras
and smartphones. Machine-learning systems are used to
identify objects in images, transcribe speech into text, match
news items, posts or products with users’ interests, and select
relevant results of search. Increasingly, these applications
make use of a class of techniques called deep learning.
Conventional machine-learning techniques were limited in
their ability to process natural data in their raw form. For
decades, constructing a pattern-recognition or machine-
learning system required careful engineering and considerable
domain expertise to design a feature extractor that transformed
the raw data (such as the pixel values of an image) into a
suitable internal representation or feature vector from which
the learning subsystem, often a classifier, could detect or
classify patterns in the input. Representation learning is a set
of methods that allows a machine to be fed with raw data and
to automatically discover the representations needed for
detection or classification.

*Corresponding author: Krupa, T. K.,
Assistant Professor, Computer Science and Engineering, Sri
Venkateshwara College of Engineering, Bangalore, Karnataka, India

Deep-learning methods are representation-learning methods
with multiple levels of representation, obtained by composing
simple but non-linear modules that each transform the
representation at one level (starting with the raw input) into a
representation at a higher, slightly more abstract level.

Supervised Learning

The most common form of machine learning, deep or not, is
supervised learning. Imagine that we want to build a system
that can classify images as containing, say, a house, a car, a
person or a pet. We first collect a large data set of images of
houses, cars, people and pets, each labelled with its category.
During training, the machine is shown an image and produces
an output in the form of a vector of scores, one for each
category. We want the desired category to have the highest
score of all categories, but this is unlikely to happen before
training. We compute an objective function that measures the
error (or distance) between the output scores and the desired
pattern of scores. The machine then modifies its internal
adjustable parameters to reduce this error. These adjustable
parameters, often called weights, are real numbers that can be
seen as ‘knobs’ that define the input–output function of the
machine. In a typical deep-learning system, there may be
hundreds of millions of these adjustable weights, and hundreds
of millions of labelled examples with which to train the

ISSN: 0976-3376

Asian Journal of Science and Technology
Vol. 08, Issue, 09, pp.5675-5679, September, 2017

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF
SCIENCE AND TECHNOLOGY

Article History:

Received 22nd June, 2017
Received in revised form
28th July, 2017
Accepted 06th August, 2017
Published online 27th September, 2017

Key words:

Deep Learning, DNN,
Machine Training,
Machine-Learning,
Deep Neural Networks.

Machine. To properly adjust the weight vector, the learning
algorithm computes a gradient vector that, for each weight,
indicates by what amount the error would increase or decrease
if the weight were increased by a tiny amount. The weight
vector is then adjusted in the opposite direction to the gradient
vector. The objective function, averaged over all the training
examples, can be seen as a kind of hilly landscape in the high
dimensional space of weight values.

Fig. 1. Deep learning representation

The negative gradient vector indicates the direction of steepest
descent in this landscape, taking it closer to a minimum, where
the output error is low on average. In practice, most
practitioners use a procedure called stochastic gradient descent
(SGD). This consists of showing the input vector for a few
examples, computing the outputs and the errors, computing the
average gradient for those examples, and adjusting the weights
accordingly. The process is repeated for many small sets of
examples from the training set until the average of the
objective function stops decreasing. It is called stochastic
because each small set of examples gives a noisy estimate of
the average gradient over all examples. This simple procedure
usually finds a good set of weights surprisingly quickly when
compared with far more elaborate optimization techniques18.
After training, the performance of the system is measured on a
different set of examples called a test set.

Fig. 2. Deep learning a breakthrough technology

5676 Asian Journal of Science and Technology

. To properly adjust the weight vector, the learning
algorithm computes a gradient vector that, for each weight,
indicates by what amount the error would increase or decrease

weight were increased by a tiny amount. The weight
vector is then adjusted in the opposite direction to the gradient
vector. The objective function, averaged over all the training
examples, can be seen as a kind of hilly landscape in the high-

Fig. 1. Deep learning representation

The negative gradient vector indicates the direction of steepest
descent in this landscape, taking it closer to a minimum, where
the output error is low on average. In practice, most

ioners use a procedure called stochastic gradient descent
(SGD). This consists of showing the input vector for a few
examples, computing the outputs and the errors, computing the
average gradient for those examples, and adjusting the weights

he process is repeated for many small sets of
examples from the training set until the average of the
objective function stops decreasing. It is called stochastic
because each small set of examples gives a noisy estimate of

amples. This simple procedure
usually finds a good set of weights surprisingly quickly when
compared with far more elaborate optimization techniques18.
After training, the performance of the system is measured on a

rning a breakthrough technology

This serves to test the generalization ability of the machine
its ability to produce sensible answers on new inputs that it has
never seen during training.

Back propagation to train multilayer

From the earliest days of pattern recognition22, 23, the aim of
researchers has been to replace hand
trainable multilayer networks, but despite its simplicity, the
solution was not widely understood until the
turns out, multilayer architectures can be trained by simp
stochastic gradient descent.
relatively smooth functions of their inputs and of their internal
weights, one can compute gradients using the backpropaga
procedure. The idea that this could be done, and that it worked,
was discovered independently by several different groups
during the 1970s and 1980s2
procedure to compute the gradient of an objective function
with respect to the weights of a multilayer stack of modules is
nothing more than a practical application of the chain Rule for
derivatives. The key insight is that the derivative (or gradient)
of the objective with respect to the input of a module can be
computed by working backwards from the gradient with
respect to the output of that module (or the input of the
subsequent module). The back
applied repeatedly to propagate gradients through all modules,
starting from the output at the top (where
produces its prediction) all the way to the bottom (where the
external input is fed). Once these gradients have been
computed, it is straightforward to compute the gradients with
respect to the weights of each module. Many applications of
deep learning use feed forward neural network architectures,
which learn to map a fixed-size input (for example, an image)
to a fixed-size output (for example, a probability for each of
several categories). To go from one layer to the next, a set of
units compute a weighted sum of their inputs from the
previous layer and pass the result through a non
function. At present, the most popular non
the rectified linear unit (ReLU), which is simply the half
rectifier f (z) = max (z, 0). In past decades, neural nets used
smoother non-linearities, such as tanh(z) or 1/(1 + exp(
but the ReLU typically learns much faster in networks with
many layers, allowing training of a deep supervised network
without unsupervised pre-training28. Unit
input or output layer are conventionally called hidden units.

The hidden layers can be seen as distorting the input in a non
linear way so that categories become linearly separable by the
last layer. In the late 1990s, neural nets an
were largely forsaken by the machine
ignored by the computer-vision and speech
communities. It was widely thought that learning useful,
multistage, feature extractors with little prior knowledge was
infeasible. In particular, it was commonly thought that simple
gradient descent would get trapped in poor local minima
weight configurations for which no small change would reduce
the average error. In practice, poor local minima are rarely a
problem with large networks. Regardless of the initial
conditions, the system nearly always reaches solutions of very
similar quality. Recent theoretical and empirical results
strongly suggest that local minima are not a serious issue in
general. Instead, the landscape i
combinatorially large number of saddle points where the
gradient is zero, and the surface curves up in most dimensions

Asian Journal of Science and Technology Vol. 08, Issue, 09, pp.5675-5679, September,

This serves to test the generalization ability of the machine —
its ability to produce sensible answers on new inputs that it has

Back propagation to train multilayer architectures

From the earliest days of pattern recognition22, 23, the aim of
researchers has been to replace hand-engineered features with
trainable multilayer networks, but despite its simplicity, the
solution was not widely understood until the mid-1980s. As it
turns out, multilayer architectures can be trained by simple
stochastic gradient descent. As long as the modules are
relatively smooth functions of their inputs and of their internal
weights, one can compute gradients using the backpropagation
procedure. The idea that this could be done, and that it worked,
was discovered independently by several different groups
during the 1970s and 1980s24–27. The backpropagation
procedure to compute the gradient of an objective function

he weights of a multilayer stack of modules is
nothing more than a practical application of the chain Rule for
derivatives. The key insight is that the derivative (or gradient)
of the objective with respect to the input of a module can be

ng backwards from the gradient with
respect to the output of that module (or the input of the
subsequent module). The back propagation equation can be
applied repeatedly to propagate gradients through all modules,
starting from the output at the top (where the network
produces its prediction) all the way to the bottom (where the
external input is fed). Once these gradients have been
computed, it is straightforward to compute the gradients with
respect to the weights of each module. Many applications of

forward neural network architectures,
size input (for example, an image)

size output (for example, a probability for each of
several categories). To go from one layer to the next, a set of

ute a weighted sum of their inputs from the
previous layer and pass the result through a non-linear
function. At present, the most popular non-linear function is
the rectified linear unit (ReLU), which is simply the half-wave

In past decades, neural nets used
linearities, such as tanh(z) or 1/(1 + exp(−z)),

but the ReLU typically learns much faster in networks with
many layers, allowing training of a deep supervised network

training28. Units that are not in the
input or output layer are conventionally called hidden units.

The hidden layers can be seen as distorting the input in a non-
linear way so that categories become linearly separable by the
last layer. In the late 1990s, neural nets and backpropagation
were largely forsaken by the machine-learning community and

vision and speech-recognition
communities. It was widely thought that learning useful,
multistage, feature extractors with little prior knowledge was

asible. In particular, it was commonly thought that simple
gradient descent would get trapped in poor local minima —
weight configurations for which no small change would reduce
the average error. In practice, poor local minima are rarely a

rge networks. Regardless of the initial
conditions, the system nearly always reaches solutions of very
similar quality. Recent theoretical and empirical results
strongly suggest that local minima are not a serious issue in
general. Instead, the landscape is packed with a
combinatorially large number of saddle points where the
gradient is zero, and the surface curves up in most dimensions

 2017

and curves down in the remainder29, 30. The analysis seems
to show that saddle points with only a few downward curving
directions are present in very large numbers, but almost all of
them have very similar values of the objective function.
Hence, it does not much matter which of these saddle points
the algorithm gets stuck at. Interest in deep feedforward
networks was revived around 2006 by a group of researchers
brought together by the Canadian Institute for Advanced
Research (CIFAR).

Fig. 3. Layers, inputs and outputs processing in deep learning
layers

Convolutional neural Networks

ConvNets are designed to process data that come in the form
of multiple arrays, for example a colour image composed of
three 2D arrays containing pixel intensities in the three colour
channels. Many data modalities are in the form of multiple
arrays: 1D for signals and sequences, including language; 2D
for images or audio spectrograms; and 3D for video or
volumetric images. There are four key ideas behind ConvNets
that take advantage of the properties of natural signals: local
connections, shared weights, pooling and the use of many
layers. The architecture of a typical ConvNet is structured as a
series of stages. The first few stages are composed of two
types of layers: convolutional layers and pooling layers. Units
in a convolutional layer are organized in feature maps, within
which each unit is connected to local patches in the feature
maps of the previous layer through a set of weights called a
filter bank. The result of this local weighted sum is then passed
through a non-linearity such as a ReLU. All units in a feature
map share the same filter bank. Different feature maps in a
layer use different filter banks. The reason for This
architecture is twofold. First, in array data such as images,
local groups of values are often highly correlated, forming
distinctive local motifs that are easily detected. Second, the
local statistics of images and other signals are invariant to
location. In other words, if a motif can appear in one part of
the image, it could appear anywhere, hence the idea of units at
different locations sharing the same weights and detecting the
same pattern in different parts of the array. Mathematically,
the filtering operation performed by a feature map is a discrete
convolution, hence the name. Although the role of the
convolutional layer is to detect local conjunctions of features
from the previous layer, the role of the pooling layer is to
merge semantically similar features into one. Because the
relative positions of the features forming a motif can vary
somewhat, reliably detecting the motif can be done by coarse-
graining the position of each feature. A typical pooling unit
computes the maximum of a local patch of units in one feature
map (or in a few feature maps). Neighboring pooling units take
input from patches that are shifted by more than one row or
column, thereby reducing the dimension of the representation
and creating an invariance to small shifts and distortions.

Fig. 4. Convolutional neural networks

Image understanding with deep convolutional networks

Since the early 2000s, ConvNets have been applied with great
success to the detection, segmentation and recognition of
objects and regions in images. These were all tasks in which
labelled data was relatively abundant, such as traffic sign
recognition, the segmentation of biological images particularly
for connectomics, and the detection of faces, text, pedestrians
and human bodies in natural images. A major recent practical
success of ConvNets is face recognition. Importantly, images
can be labelled at the pixel level, which will have applications
in technology, including autonomous mobile robots and self-
driving cars. Companies such as Mobileye and NVIDIA are
using such ConvNet-based methods in their upcoming vision
systems for cars. Other applications gaining importance
involve natural language understanding14 and speech
recognition7. Despite these successes, ConvNets were largely
forsaken by the mainstream computer-vision and machine-
learning communities until the Image Net competition in 2012.
When deep convolutional networks were applied to a data set
of about a million images from the web that contained 1,000
different classes, they achieved spectacular results, almost
halving the error rates of the best competing approaches1. This
success came from the efficient use of GPUs, ReLUs, a new
regularization technique called dropout62, and techniques to
generate more training examples by deforming the existing
ones. This success has brought about a revolution in computer
vision; ConvNets are now the dominant approach for almost
all recognition and detection tasks4 and approach human
performance on some tasks. A recent stunning demonstration
combines ConvNets and recurrent net modules for the
generation of image captions Recent ConvNet architectures
have 10 to 20 layers of ReLUs, hundreds of millions of
weights, and billions of connections between units. Whereas
training such large networks could have taken weeks only two

5677 Asian Journal of Science and Technology Vol. 08, Issue, 09, pp.5675-5679, September, 2017

years ago, progress in hardware, software and algorithm
parallelization have reduced training times to a few hours. The
performance of ConvNet-based vision systems has caused
most major technology companies, including Google,
Facebook, Microsoft, IBM, Yahoo!, Twitter and Adobe, as
well as a quickly growing number of start-ups to initiate
research and development projects and to deploy ConvNet-
based image understanding products and services. ConvNets
are easily amenable to efficient hardware implementations in
chips or field-programmable gate arrays. A number of
companies such as NVIDIA, Mobileye, Intel, Qualcomm and
Samsung are developing ConvNet chips to enable real-time
vision applications in smartphones, cameras, robots and self-
driving cars.

Distributed representations and language processing

Deep-learning theory shows that deep nets have two different
exponential advantages over classic learning algorithms that
do not use distributed representations21. Both of these
advantages arise from the power of composition and depend
on the underlying data-generating distribution having an
appropriate componential structure40. First, learning
distributed representations enable generalization to new
combinations of the values of learned features beyond those
seen during training (for example, 2n combinations are
possible with n binary features) 68, 69. Second, composing
layers of representation in a deep net brings the potential for
another exponential advantage70 (exponential in the depth).
The hidden layers of a multilayer neural network learn to
represent the network’s inputs in a way that makes it easy to
predict the target outputs. This is nicely demonstrated by
training a multilayer neural network to predict the next word in
a sequence from a local context of earlier words71. Each word
in the context is presented to the network as a one-of-N vector,
that is, one component has a value of 1 and the rest are 0. In
the first layer, each word creates a different pattern of
activations, or word vectors (Fig. 4). In a language model, the
other layers of the network learn to convert the input word
vectors into an output word vector for the predicted next word,
which can be used to predict the probability for any word in
the vocabulary to appear as the next word. The network learns
word vectors that contain many active components each of
which can be interpreted as a separate feature of the word, as
was first demonstrated27 in the context of learning distributed
representations for symbols. These semantic features were not
explicitly present in the input.

They were discovered by the learning procedure as a good way
of factorizing the structured relationships between the input
and output symbols into multiple ‘micro-rules’. Learning word
vectors turned out to also work very well when the word
sequences come from a large corpus of real text and the
individual micro-rules are unreliable71. When trained to
predict the next word in a news story, for example, the learned
word vectors for Tuesday and Wednesday are very similar, as
are the word vectors for Sweden and Norway. Such
representations are called distributed representations because
their elements (the features) are not mutually exclusive and
their many configurations correspond to the variations seen in
the observed data. These word vectors are composed of
learned features that were not determined ahead of time by
experts, but automatically discovered by the neural network.
Vector representations of words learned from text are now

very widely used in natural language applications. The issue of
representation lies at the heart of the debate between the logic-
inspired and the neural-network-inspired paradigms for
cognition. In the logic-inspired paradigm, an instance of a
symbol is something for which the only property is that it is
either identical or non-identical to other symbol instances. It
has no internal structure that is relevant to its use; and to
reason with symbols, they must be bound to the variables in
judiciously chosen rules of inference. By contrast, neural
networks just use big activity vectors, big weight matrices and
scalar non-linearities to perform the type of fast ‘intuitive’
inference that underpins effortless commonsense reasoning.
Before the introduction of neural language models71, the
standard approach to statistical modelling of language did not
exploit distributed representations: it was based on counting
frequencies of occurrences of short symbol sequences of
length up to N (called N-grams). The number of possible N-
grams is on the order of VN, where V is the vocabulary size,
so taking into account a context of more than a handful of
work.

Recurrent Neural Networks

When backpropagation was first introduced, it’s most exciting
use was for training recurrent neural networks (RNNs). For
tasks that involve sequential inputs, such as speech and
language, it is often better to use RNNs. RNNs process an
input sequence one element at a time, maintaining in their
hidden units a ‘state vector’ that implicitly contains
information about the history of all the past elements of the
sequence. When we consider the outputs of the hidden units at
different discrete time steps as if they were the outputs of
different neurons in a deep multilayer network. it becomes
clear how we can apply backpropagation to train RNNs. RNNs
are very powerful dynamic systems, but training them has
proved to be problematic because the back propagated
gradients either grow or shrink at each time step, so over many
time steps they typically explode or vanish77,78. Thanks to
advances in their architecture79, 80 and ways of training them,
RNNs have been found to be very good at predicting the next
character in the text83 or the next word in a sequence, but they
can also be used for more complex tasks. For example, after
reading an English sentence one word at a time, an English
‘encoder’ network can be trained so that the final state vector
of its hidden units is a good representation of the thought
expressed by the sentence. This thought vector can then be
used as the initial hidden state of (or as extra input to) a jointly
trained French ‘decoder’ network, which outputs a probability
distribution for the first word of the French translation. If a
particular first word is chosen from this distribution and
provided as input to the decoder network it will then output a
probability distribution for the second word of the translation
and so on until a full stop is chosen. Overall, this process
generates sequences of French words according to a
probability distribution that depends on the English sentence.
This rather naive way of performing machine translation has
quickly become competitive with the state-of-the-art, and this
raises serious doubts about whether understanding a sentence
requires anything like the internal symbolic expressions that
are manipulated by using inference rules. It is more compatible
with the view that everyday reasoning involves many
simultaneous analogies that each contribute plausibility to a
conclusion. Instead of translating the meaning of a French
sentence into an English sentence, one can learn to ‘translate’

5678 Asian Journal of Science and Technology Vol. 08, Issue, 09, pp.5675-5679, September, 2017

the meaning of an image into an English sentence. The
encoder here is a deep ConvNet that converts the pixels into an
activity vector in its last hidden layer. The decoder is an RNN
similar to the ones used for machine translation and neural
language modelling. There has been a surge of interest in such
systems recently (see examples mentioned in ref.). RNNs,
once unfolded in time, can be seen as very deep feedforward
networks in which all the layers share the same weights.

Future of deep learning

Unsupervised learning had a catalytic effect in reviving
interest in deep learning, but has since been overshadowed by
the successes of purely supervised learning. Although we have
not focused on it in this Review, we expect unsupervised
learning to become far more important in the longer term.
Human and animal learning is largely unsupervised: we
discover the structure of the world by observing it, not by
being told the name of every object. Human vision is an active
process that sequentially samples the optic array in an
intelligent, task-specific way using a small, high-resolution
fovea with a large, low-resolution surround. We expect much
of the future progress in vision to come from systems that are
trained end-toend and combine ConvNets with RNNs that use
reinforcement learning to decide where to look. Systems
combining deep learning and reinforcement learning are in
their infancy, but they already outperform passive vision
systems99 at classification tasks and produce impressive
results in learning to play many different video games. Natural
language understanding is another area in which deep learning
is poised to make a large impact over the next few years. We
expect systems that use RNNs to understand sentences or
whole documents will become much better when they learn
strategies for selectively attending to one part at a time.
Ultimately, major progress in artificial intelligence will come
about through systems that combine representation learning
with complex reasoning. Although deep learning and simple
reasoning have been used for speech and handwriting
recognition for a long time, new paradigms are needed to
replace rule-based manipulation of symbolic expressions by
operations on large vectors.

Conclusion

Deep learning = Learning Hierarchical Representations

Deep learning is thriving in big data analytics, including image
processing, speech recognition, and natural language
processing.

Deep learning has matured and is very promising as an
artificial intelligence method.

Still has room for improvement: Scaling computation

Optimization
Bypass intractable marginalization
More disentangled abstractions
Reasoning from incrementally added facts.

REFERENCES

Farabet, C., Couprie, C., Najman, L. and LeCun, Y. 2013.

Learning hierarchical features for scene labeling. IEEE
Trans. Pattern Anal. Mach. Intell. 35, 1915–1929.

Hinton, G. et al. 2012. Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal Processing
Magazine 29, 82–97. This joint paper from the major
speech recognition laboratories, summarizing the
breakthrough achieved with deep learning on the task of
phonetic classification for automatic speech recognition,
was the first major industrial application of deep learning.

Krizhevsky, A., Sutskever, I. and Hinton, G. 2012. ImageNet
classification with deep convolutional neural networks. In
Proc. Advances in Neural Information Processing Systems
25 1090–1098. This report was a breakthrough that used
convolutional nets to almost halve the error rate for object
recognition, and precipitated the rapid adoption of deep
learning by the computer vision community.

Mikolov, T., Deoras, A., Povey, D., Burget, L. and Cernocky,
J. 2011. Strategies for training large scale neural network
language models. In Proc. Automatic Speech Recognition
and Understanding 196–201.

Szegedy, C. et al. 2014. Going deeper with convolutions.
Preprint at http://arxiv.org/ abs/1409.4842.

Tompson, J., Jain, A., LeCun, Y. and Bregler, C. 2014. Joint
training of a convolutional network and a graphical model
for human pose estimation. In Proc. Advances in Neural
Information Processing Systems 27 1799–1807.

5679 Asian Journal of Science and Technology Vol. 08, Issue, 09, pp.5675-5679, September, 2017

