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The purpose of this paper is to define and study �∗�∗-closed sets and �∗�∗�-closed sets, �∗�∗�-closed 
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INTRODUCTION 
 

 
 

In 1970, Levine [6] first considered the conceot of generalized closed ( briefly, g-closed) sets were defined and investigated. Arya 
and Nour[2] defined generalized semi open (briefly, gs-open) sets using semi open sets. Veerakumar[11], S. Yuksel and Becern 
[12], A.Acikgoz[1] introduced �∗-closed set, �∗- sets and �∗�- closed sets respectively. We introduced a new class of sets �∗�∗-
closed sets and study their simple properties. 
 
Throughout this paper (�, �), (�, �) and (�, �) (��	�, �, �) represents topological spaces on which no seperaxion axioms are 
assumed unless otherwise mentioned. For a subset A of a space  (�, �), ��(�), ���(�) and ��	(��	�	 − �) denote the closure of 
A, the interior of A and the complement of A in X, respectively. 
 
Definition: 1.1 A subset A of a topological space (�, �) is called: 
 

 pre open [8] � ⊆ ������(�)�, 

 semi open [5] � ⊆ ������(�)�, 
 
The family of all preopen sets (resp. semi open sets) in X will be denoted by ��(�) (resp. ��(�)). A semi closure (resp. pre 
closure) of a subset  A of X denoted by ���(�)  ( resp. ���(�)) is defined to be the intersection of all semi closed (resp. pre closed) 
sets containing A. A semi interior (resp. pre interior) of a subset X denoted by �	���(�) (resp. 	�	���(�)) is defined to the union of 
all semi open (resp. pre open) sets contained in A. 
 
Definition: 1.2 A subset A of a topological space (�, �) is called: 
 

 a generalized closed set (briefly g-closed) [6] if ��(�) ⊆ � whenever � ⊆ � and U is open in (�, �), 
 a �∗- closed [11] if ��(�) ⊆ � whenever � ⊆ � and U is g-open set in (�, �), 
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 a ��-closed [7] if  ���(�) ⊆ � whenever � ⊆ � and U is open set in (�, �), 
 a �� -closed[2] if ���(�) ⊆ � whenever � ⊆ � and U is open set in (�, �). 

 
The complements of above sets are called their respective open sets. 
 

Definition:1.3  A subset A of a space (�, �) is called a �∗-set [12] if� = �⋂�, where U is open and ���(�) = ������(�)�. 

Definition:1.4  A subset A of a space (�, �) is called a �∗�-closed set[1] if ��(�) ⊆ � whenever � ⊆ �	and U is  �∗-set in X. 
 
2. �∗�∗-closed set  
 

Definition 2.1. A subset A of a space (�, �) is called �∗�∗-closed set if ��(�) U  whenever � U and U is a �∗�-open in X. 
 

Definition 2.2.  A subset A of a space (�, �) is called �∗�∗�-closed set if ���(�) U  whenever � U and U is a �∗�-open in 

X. 
 

Definition 2.3. A subset A of a space (�, �) is called �∗�∗�-closed set if ���(�) U  whenever � U and U is a �∗�-open in X. 
 

Theorem 2.4. Let (�, �) be a topological space. Then we have  
 

 Every closed set is a �∗�∗-closed set. 
 Every �∗�∗-closed set is a � -closed set. 

 
Proof 
 

 Let A be a closed set in (�, �) and U be a �∗�-open set such that � U .  Since A is closed, cl(A) = A, So  ��(�) U . 

Hence A is �∗�∗-closed set in  (�, �). 

 Let A be a �∗�∗-closed set in (�, �) and � U where U is �∗�-open set. Since every open set is a �∗�-open set, So U is 

an open set of (�, �). Since A is a �∗�∗-closed set, we obtain that ��(�) U , hence A is a g-closed set of (�, �). 

 
Remark 2.5. The converse of the above theorem need not be true as seen from the following examples. 
 
Example 2.6. Let � = {�, �, �, �} and � = {∅, {�}, {�}, {�, �}, {�, �}, {�, �, �}, {�, �, �}, �}. Then the subset � = {�, �, �} is a �∗�∗-
closed set, but it is not a closed set. 
 

Example 2.7. Let X ={ },, cba and { ,{ }, }.c X   Then subset }{aA  is a g-closed set, but it is not a �∗�∗-- closed set. 

 

Theorem 2.8. Let ( X , ) be a topological space. Then we have 
 

 Every �∗�∗- closed set is a �∗�∗�
 
- closed set  

 Every �∗�∗- closed set is a  �∗�∗� - closed set 
 

Proof:  (i) Assume that A  is a 
* g*- closed set in ( X , ) and A U where U is a 

* g- open set. We have 

UAclApcl  )()( . Therefore UApcl )( . Hence A  is  a 
* g* p - closed set in ( X , ) 

 

  (ii) Assume that A  is a �∗�∗-closed set in ( X , ) and A U where U is a �∗�∗- ope set. We have 

UAclAscl  )()( . Therefore UAscl )( . Hence A  is  a 
* g* s - closed set in ( X , ).    

 
Example 2.9. Let � = {�, �, �, �} and � = {∅, {�}, {�, �}, {�, �, �}, �}. Then the subset � = {�} is a �∗�∗�-closed set, but it is not a 
�∗�∗-closed set.  
 
Example 2.10. Let � = {�, �, �, �} and � = {∅, {�}, {�, �}, {�, �, �}, �}. Then the subset � = {�, �} is a �∗�∗�-closed set, but it is 
not a �∗�∗-closed set. 
 
Theorem 2.11. Let (�, �) be a topological space. Then we have  
 

 Every �∗�∗�- closed set is a gp-closed set. 
 Every �∗�∗�-closed set is a gs-closed set. 
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Proof.  (i) Assume that A  is a	�∗�∗� - closed set of  ( X , ). Let A U  where U is a 
* g- open  set. Since every open set is 

a �∗�∗-open set. Since A is a �∗�∗� -closed set, Therefore UApcl )( . Hence A  is a ��-closed set of (�, �).    

(ii) Assume that A  is a	�∗�∗� - closed set of ( X , ). Let A U  where U is a �∗�∗- open set. Since every open set is a 

�∗�∗ −open set. Since A is a �∗�∗� -closed set, Therefore UAscl )( . Hence A  is a ��-closed set of (�, �).    

 
Remark 2.12. The converse of the above theorem need not be true as seen from the following examples. 
 
Example 2.13. Let � = {�, �, �, �} and � = {∅, {�}, {�}, {�, �}, {�, �, �}, �}. Then the subset � = {�, �} is a gp-closed set, but it is 
not a  �∗�∗� -closed set. 
 
Example 2.14. Let � = {�, �, �, �} and � = {∅, {�}, {�, �}, {�, �, �}�}. Then the subset � = {�} is a gs-closed set, but it is not a  
�∗�∗� -closed set. 
 

Theorem 2.15. Let ( X , ) be a topological space. Then we have 
 

 Every �∗�∗ −closed set is a ��-closed set  

 Every  �∗�∗ −closed set is a ��-closed set 
 

Proof.  (i) Assume that A  is a �∗�∗- closed set of ( X , ). Let A U where U is a �∗�∗- open set. Since every open set is a 

�∗�∗–open, we have UApcl )( . Hence A  is a �� -closed set of ( X , ). 

 (ii) Assume that A  is a �∗�∗ −closed set of ( X , ). Let A U where U is a �∗�∗- open set. Since every open set is 

a �∗�∗–open, we have UAscl )( . Hence A  is a �� -closed set of   ( X , ). 

 
Remark 2.16. The converse of the above theorem need not be true as seen from the following examples. 
 
Example 2.17. Let � = {�, �, �, �} and � = {∅, {�}, {�, �, �}, �}. Then the subset � = {�} is a �� -closed set, but it is not a �∗�∗-
closed set. 
 
Example 2.18. Let � = {�, �, �, �} and � = {∅, {�}, {�, �, �}, �}. Then the subset � = {�} is a	�� -closed set, but it is not a �∗�∗-
closed set.       
  

Remark 2.19. A  
*  - set is independent from �∗�∗-closed set as it can be seen from the next two examples. 

 
Example 2.20. Let � = {�, �, �, �} and � = {∅, {�}, {�}, {�, �}, {�, �}, {�, �, �}, �}. Then the subset � = {�} is a �∗-set, but it is not 
a  �∗�∗ -closed set. 
 
Example 2.21. Let � = {�, �, �, �} and � = {∅, {�}, {�}, {�, �}, {�, �}, {�, �, �}, �}. Then the subset � = {�, �, �} is a �∗�∗-closed 
set, but it is not a  �∗ -set. 
 
Theorem 2.22. If A and B are �∗�∗-closed, then � ∪ � is a �∗�∗-closed set. 
 

Proof. Let A and B are �∗�∗-closed sets in X. Let U be �∗�-open set in X such that A B U  . Then UA  and UB  . 

Since A and B are  �∗�-closed sets. (A)cl U  and (B)cl U . Hence .)()()( UBclAclBAcl   Therefore 

BA  is  �∗�∗-closed set whenever A and B are �∗�∗-closed set. 
     
Remark 2.23. The finite intersection of two �∗�∗-closed sets need not be �∗�∗-closed set. 
 
Example 2.24. Let � = {�, �, �, �, �} and � = {∅, {�}, {�}, {�, �}, �}. Then the subset � = {�, �, �}  and {�, �, �} are  �∗�∗-closed 
sets,  but {�, �, �}⋂{�, �, �} = {�, �}   is not a �∗�∗-closed set. 
 

Theorem 2.25.   If ( )A B cl A   and A is a �∗�∗-closed subset of ( X , ), then B is also a �∗�∗-closed subset of ( X , ). 

Proof. Let U be a �∗�-open subset,  such that A B U  ,Since A is  �∗�∗-closed subset of ( X , ). ,)( UAcl   by 

hypothesis ( )A B cl A  , (A) cl(B)cl  . Hence (B) Ucl   whenever B U , Therefore B is �∗�∗-closed subset of (

X , ). 
 

Theorem 2.26. For any topological space ( X , ), every singleton {�} of � is a �∗�-open set. 
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Proof. Let � ∈ �. Let {�} ∈ �, then {�}	is a �∗�-open set. If {�}�, then ���({�}) = ∅ = ������({�})�, so {�} is a �∗�-open set. 

Theorem 2.27. A subset A of X is  �∗�∗-closed set in X if and only if (A) Acl  Contains no nonempty  �∗�-closed set in X. 

Proof:. Suppose that F is a nonempty  �∗�-closed subset of (A) Acl  . Now (A) AF cl  . (A) AcF cl  .  Therefore 

(A)F cl  and A cF  . Since 
cF is �∗�-open such that 

cA F and A is �∗�∗-closed, ( ) ccl A F , ie ( )cF cl A . 

Hence ( ) [cl(A)]cF cl A    . Ie, F  . Thus (A) Acl  contains no nonempty �∗�∗-closed set. 

 

Conversely, Assume that (A) Acl  Contains no nonempty �∗�-closed set. Let A U , U  is �∗�-open. Suppose that (A)cl  

is not contained in U. Then (A) Uccl  is a nonempty �∗�-closed set and contained (A) Acl  which is contradiction. 

Therefore (A) Ucl   and hence A is �∗�-closed set. 
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