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Power system state estimation requires error less data to estimate the exact states of the power system.
The Estimation process is done by Energy Management System (EMS) at the control centre with the
help of estimated data. In practical conditions, collected data contain the measurement and process
errors. These errors are due to high speed measuring devices and Phasor Measurement Units (PMU)
installed on different buses. Due to communication errors, different filtration techniques are required at
the control centre to get the best estimated data. For nonlinear power system, new improved Kalman
filter techniques are introduced in this paper. Emerging Extended Kalman Filter (E-EKF) and Emerging
Unscented Kalman Filter (E-UKF) based on the exponential description function are proposed in this
paper. The effectiveness of these improved techniques is compared with the conventional nonlinear
filterson the basis of elapsed time and Root Mean Square Error (RMSE). The performance of these
filters is tested on standard IEEE-30 bus test system.

Copyright©2017, Arpit Khandelwal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The vector consisting of bus voltage magnitudes and phase
angles is called the state of an electric power system. The
concept of state estimation was introduced into the field of
power systems in 1947 (Schweppe, 1968; Schweppe, 1970 and
Schweppe, 1970). Estimation of the dynamic state of a power
system is the first prerequisite for control and stability
prediction under transient conditions (Miller, 1971). The
inputs from static estimation are necessary for many
applications like Automatic Generation Control (Saxena,
2012), contingency (Soni, 2016), and Voltage stability
assessment (Akash Saxena and Ankit Kumar Sharma, 2016).
The great importance of the 'Dynamic State Estimation (DSE)'
in system monitoring and control of power systems, especially
with the introduction of Phasor Measurement Units (PMUs)
(Jain and Shivakumar, 2008; Xue et al., 2007; Jain and N.
Shivakumar, 2008; Shivakumar and A. Jain, 2008 and Jain and
N. R. Shivakumar, 2009). A dynamic state estimator for power
system networks is firstly addressed by Debs and Larson
(Debs, 1970). In this work, the state change is represented by
Gaussian noise. Then, a novel method for detecting and
ascertaining anomalies as the occurrence of bad-data, changes
in network configuration and sudden variation of states, in
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dynamic state estimation for electric power systems was
proposed (Nishiya, 1982). Simple dynamic models for the
state vector comportment, combined with linearized
measurement equations, have been anticipated and the
estimations have been attained through Kalman Filtering
Theory. Through the application of Kalman Filter techniques,
at a first state, the set of measurements is used to estimate the
state model parameters and at a second stage, estimate the state
vector. New algorithms considering exponential smoothing
and least-squares estimation techniques are used for
forecasting and filtering the state vector for power systems
(Leite da Silva, 1983). One of the most widely used methods is
Extended Kalman Filter (EKF) in power system dynamic state
estimation which takes into account both the incoming
measurements and the predicted state to acquire a prime
estimate of the state (Mandal, 1995). The feasibility of
smearing Extended Kalman Filter techniques to include
dynamic state variables (generator rotor speed and rotor angle)
in the state estimation process is well investigated on a multi-
machine system with both large and small disturbances
(Huang, 2007). The extended Kalman Filter with unknown
inputs, referred to as EKF-UI, is proposed for estimating the
states and the unknown inputs of the synchronous machine
(Ghahremani and I. Kamwa, 2011). A novel framework to
perform EKF based dynamic state estimation in a distributed
way is considering complexity associated with increasing
renewable resources and novel smart-grid technologies (Du,
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2001). According to it, DSE can be implemented in a
distributed environment by decomposing the systems into
subsystems to increase the computational speed of DSE
process in large scale power systems. The EKF is one of the
most widely used estimation algorithms for nonlinear systems.
It is difficult to implement, difficult to tune and only reliable
for systems that are almost linear on the time scale of the
updates [20]. In order to overcome the difficulties and
drawbacks of the EKF algorithm which mainly arise from its
use of linearization, the Unscented Transformation (UT) is
developed as a method to propagate mean and covariance
information through nonlinear transformation (Julier, 2004).
The UKF has higher accuracy and easy to implement in
estimating the dynamics of generators (Gao and S. Wang,
2010 and Valverde and V. Terzija, 2011). The performance of
the UKF technique is derived, demonstrated and compared
with the performance of classical EKF technique by using
three different test power systems under typical network and
measurement conditions (Valverde and V. Terzija, 2011).

It is proved by using the performance indices that the UKF has
higher filtering capacities during slow dynamic changes than
EKF estimator (Valverde and V. Terzija, 2011). A new
parameter estimation method for frequency, amplitude and
phase tracking based on UKF is presented and it is shown that
UKF method has high estimation accuracy both under normal
and noisy conditions (Novanda, 2011 and Wang, 2012). A
derivative-free approach to Kalman filtering is introduced and
applied to state estimation-based control of a class of nonlinear
dynamical systems in (Rigatos, 2012). A new method for the
simultaneous estimation of power components and frequency
is presented based on UKF method (Regulski and V. Terzija,
2012). The forecasting ability of dynamic state estimation has
tremendous advantages, as security analysis can now be
performed one-time stamp ahead and hence allows more time
for the operator to take control actions, especially in cases of
any emergency (Do CouttoFilho, 1993 and SunitaChohan,
1993). Hence, DSE algorithms for power systems form an
important branch of power system state estimation techniques,
with a potential to impact the very nature of operation of the
real-time monitoring and control of power systems. On the
basis of the review of the literature, following objectives are
framed for this manuscript.

e To mathematical modeling and suggest modifications
in existing Kalman filters on the basis of exponential
description function.

e To carry out DSE of voltage, angle, real and reactive
powers for standard electrical power systems and check
the robustness of the proposed estimator against
measurement and process noise.

e To present the decisive evaluation of filtering
performance of proposed filter with the conventional
filters based on the calculation of Elapsed timeand
standard error index Root Mean Square Error (RMSE).

The remaining part of this paper is presented as follows; in
following sections the problem of the state estimation, filter
algorithm equations, simulation results and effectiveness of
proposed filters over traditional filters are presented. The
overall conclusion and future scope associated with proposed
framework is presented.

PROBLEM FORMULATION

The information of the system is provided by the state
differential equations and the measurement captured after the
change in the system measurements. Figure 1 shows the
working procedure of state estimation for making appropriate
control action for remain system in stable.
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Physical | State Control
" sstem " system Estimator Center

Control Action
—

X- True System State Vector
Z- Measurement Vector

u- Input Vector
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Figure 1. General block diagram of state estimation

Considering the nonlinear filtering problem given below which
is defined by discrete time instant given by k=1,2,..N

Xk :f(xk—U@’ ”k—1)+Wk
Z, :h(x,H,@, u,H)Jrvk

where © X’ is the state vector, ‘%’ is the control input and * Z°
is the measurement vector. The * f and ° h’ are nonlinear

functions of state and measurement equations respectively.
The injected noise, are assumed to be the random noise of the
order of state and measurement matrix order and are
identically and independently distributed.

E[wkwf]:Qé'(k—j)& E[wk]:O
E[ vy} |=R5(k-j)& E[v,]=0
E[wy |=0V).k=12,..N

Where R,(Q are covariance of error, § is Kronecker delta

function
N0 i k#
S(k—j)= _ e 3)
1 if k=
The parameter vector ‘@’ is augmented as
Xy _ f(xk—l’ ®k—1’uk—1) + Wi @)
0, 0, 0
The nonlinear filtering problem is now defined as
X, = f(Xk—1)+Wk
..................... (5)

Z,=h(X,)+v,

where ¢ X > and ‘ W’ are respectively the augmented state and
process noise vector.The power system is a nonlinear system,
which changes its state dynamically as illustrated in above
equation.
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MATHEMATICAL FRAME WORK OF FILTERS

The Extended Kalman Filter (EKF) Equations: The EKF
algorithm works on the discrete nonlinear system model,
where noises are Gaussian distribution noises with known
parameters. The extended algorithm is almost similar with KF
algorithm.

The EKF state estimation algorithm is presented below:
Initialization step

Initial estimated state vector X, = E{x,}

o . .= - \T
Initial covariance matrix: Py, = E {(go - go). (go - go) }

Linearizing the nonlinear model functions andcalculate the
following matrices:

- oF oF ]
o i -
o, o
| Ox, O ox, le=%
oG e (6)
C, =| :
oG, oG,
| Ox, o ox, le=%,

The linearization method utilizes just the first term in the
Taylor expansion of the nonlinear functions

Calculation of the predicted state mean and covariance
(time update)

X; :F()_Ek—PZk—l)

- SO PPN 7
P, =0,.P, 2] +0
The filter gain vector:

K, =P, C(C.B,.C+R)" .. ®)

Correction step: The estimates are updated with the latest
observation (measurement update)

X, =X; +Kk'(yk _G()_E/?”k))
P,=(I1-K.C,).P,

The EKF gives an approximation of the optimal estimate (Gol
and A. Abur, 2012).

The Unscented Kalman Filter (UKF) Equations: The state
distribution is also represented by Gaussian random variables,
but this method is using a minimal set of carefully chosen
sample points. These points are called sigma points and they
are completely capture the true mean and covariance of the
system states and are propagated through the nonlinearity.

The standard UKF state estimation algorithm is presented
below:

Initialization step at k=0:

Initial estimated state vector: X, = E{x,}

Initial covariance matrix: Py g = E {(&0 — 20). (&0 — XO)T}
Sigma points’ calculation

4 = [ik,lfck,l + 7P F — 7P } .......... (10)
Propagation of the sigma points

Transform the sigma points through the state-update function:
4, = F(Ak—l ~”k—1)

Calculate the apriori state estimate and apriori covariance,

where the weights Wi(m)and Wi(c)are defined in accordance
with relations:

Update of the output vectors

Transform the sigma points through the measurement-update
function:

Y/: = G(A(k—l) BT

calculate the mean and covariance of the measurement vector:

2n
=2 WY,
i=0

...... (14)
2n
p _ (e) * ~ * ~ T
By =dW(Y) -7 4) - %) +R
i=0
Calculate the cross covariance matrix:
- 2.n ( ) . . T
PBLi=>W .((xk)i—x,;).((yk)i—y,;) ......... (15)
i=0
Calculation of the Kalman filter gain vector:
~ ~ \-l
K, = Rc,y,k'(f)y,k) ........... (16)
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Calculate the estimated state in accordance with the standard
Kalman filter algorithm:

X, =X +Kk'(yk _J~’1;)

The most computationally intensive operation in the UKF
corresponds to calculating the new set of sigma points at each
time update (Julier and J. K. Uhlmann, 2004; Ghahremani and
I. Kamwa, 2011 and Wang, 2012).

The Emerging EKF and Emerging UKF Algorithm
Equations: The Emerging EKF and Emerging UKF
algorithms are based on exponential description function for
reducing covariance of the filter in every dynamic step
according to the previous calculation done. With the
exponential description, the exponential function covariance
updates the system covariance, which effects on gain
calculated through Kalman filter. Due to this, system
efficiency and accuracy will update in every time period which
upgrades the overall accuracy of the filter for estimate the state
vectors. The exponential description is used in EKF for make
Emerging EKF is shown below:

RR=R"
RR = RR* * e(mean) (Perforrnance)(ﬁher)
R* _ RRfl

K, =P, C (C.P, C +R)"
%, =%+ Ko (3 - Gl(F )

~ . ~
P, =(I-K.C,).B,
Where R’ is emerging noise covariance, KZ is emerging

Kalman gain and & shows the performance of the filter which
dispirits from actual to estimated. Due to the mean
measurement function variation, the performance ofthe filter
will improve due to gain reduce. The Emerging UKF performs
better and it defines as:

RR* = I{Rpre*sqrt2 (8)(ﬁ1ter)
= SWO0) () 5 8

K; - Et,}-,k'(ﬁ;,k)_l

X, =X +K;-(}’,rc—5‘}z) .(19)

% . . . .
Where Pykls updated cross covariance which improves

Kalman Gain in Emerging and update state vectors.

RESULTS

The effectiveness of proposed Kalman filters is evaluated on
different cases on the standard IEEE 30 bus system. The
standard IEEE 30 bus system represents a portion of the
American Electrical Power System since December 1961. This

system maintains 30 buses, 6 generators and 24 load buses.
The algorithm has been written in MATLAB 2014 and same
has been simulated over Intel core 15, 2.9 GHz, 4.00 GB RAM
processor. In case 1 the dynamic cycle for the system is chosen
50 cycles, in case 2 it is considered 100 cycles and in the case
3 the estimation is proceeded on 200 dynamic cycles. In every
dynamic cycle, the state vector interacts with random number
which is Gaussian in nature and updates the value to state
vectors with zero mean and standard covariance.The standard
deviation is also increase with the increase in number dynamic
cycles. Figure 2 shows the standard deviation of state vectors
of voltage and angle in different dynamic cycle and figure 3
illustrate the average of standard deviation.

Standard Deviation in Different Dynamic Cycles
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Figure 2. Standard Deviation in different dynamic cycles
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Figure 3. Average of standard deviation

According to figure 3 the standard deviation is decrease to
70.90% from standard deviation of 100 cycles to standard
deviation of 50 cycles and standard deviation is decrease to
73.27% from standard deviation of 200 cycles to standard
deviation of 100 cycles. It means in every 50% of dynamic
cycles the standard deviation decrease to about 72% of its
value.

Case-1 when dynamic cycle= 50 times

The state vectors of the electrical systems are voltage and
angle. By the use of these vectors, the other parameters of the
systems (active and reactive powers on the nodes, active and
reactive power flows on the line) can be calculated. In regular
condition, these parameters are also called the state vectors.
Figure 4 shows the state vectors values estimated by different
nonlinear filters. Figure 5 represents the variation of outputs of
different filters from without filter output. The maximum
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variation shows the maximum value of communication error.
Here according to figure 5 maximum errors are associated with
EKF filter. It means at the higher values of dynamic cycles of
error, the EKF filter fails to estimate exact values of
parameters. But in the case of other filters results are
comparatively better and it is best in E-UKF filter.

-7.88

e Without Filter
+— EKF
+— UKF
———— E-EKF Filter
——+— E-UKF Filter

Estimated Values of State Vectors (in pu)

According to the figures shown in case 2 and case 3, figure 7
and figure 9 validate the effectiveness of emerging filters over
traditional filters used. In case 2, there is 100 dynamic cycles
andin case 3, it is 200 cycles for add Gaussian noise in filters.

L
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L L
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Figure 4. Estimated State vectors of the system when N=50
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Figure 5. Filter variation from without filter estimation when N=50

Case-2 when dynamic cycle= 100 times
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Figure 6. Estimated State vectors of the system when N=100
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Figure 7. Filter variation from without filter estimation when N=100

Case-3 when dynamic cycle= 200 times
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Figure 8. Estimated State vectors of the system when N=200
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Figure 9. Filter variation from without filter estimation when N=200

With the increase of dynamic cycles, the error is also
increasing and due to this, traditional methods are failing to
estimate state vectors required. The robustness and
effectiveness are greater in new emerging filters. Figure 10
shows the statistical analysis of different filters with respect to
time elapsed for calculating parameters.

The statistical data for all four filterperformances are shown in
figure 11. Figure 12 shows the Sum of RMSE -calculated,
which shows the performance of Emerging filters over
traditional filters. The RMSE observed in E-EKF is 11.78% of
EKF and in case of E-UKEF, it is about 18.51 % of UKF.
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Elapsed Time Calculated
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Figure 10. Elapsed time by each filter
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Sum of RMSE Calculated by Filter
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Figure 12. Sum of RMSE calculated
Conclusion

Two major conclusions can be derived with this simulation
and analytical studies. Firstly, As per the variations of the
measured state vectors from the actual state values, the
Emerging EKF and Emerging UKF show promising results
and performing well for calculate error is reduced. It has been
observed with different case studies that these emerging filters
are suitable for online applications at any EMS. Secondly, as
per the time elapsed, emerging EKF presents swift results.
Significant improvements are observed with the proposed
modifications. Application of these filters in noisy
environment lies in future scope of this manuscript.
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