
 
         
                                                                                                                                                            
 
 

 

 
 

 
 
 

 
RESEARCH ARTICLE 

 

ASPECTS OF LOITSIANSKY’S TYPE OF INVARIANT 
 

*,1Ghosh, N. C., 2Pijush Basak and 3Abhijit Bhattacharya 
 

1S.N. Bose Institute for Mathematics & Mathematical Sciences 
2Narula Institute of Technology 

3B.P. Poddar Institute of Management & Technology 
 

 
 

 ARTICLE INFO    ABSTRACT 
 

Turbulence is seen as one of the last outstanding unsolved problems in classical physics. In the last 
century, great minds viz, Heisenberg, von Weizs"acker, Kolmogorov, Prandtl and G.I. Taylor had 
worked on it. Einstein put his last postdoc Bob Kraichnan on the subject of Turbulence. Despite the fact 
that isotropic turbulence constitutes the simplest type of turbulent flow, it is still not possible to render 
the problem analytically traceable without introducing the two point double and triple longitudinal 
velocity correlations to admit self-similarity solution with respect to a single length-scale, which has 
served as a useful hypothesis since its inception by von Karman and Howarth (1938). Rapid 
development of experimental and numerical techniques in this area and the growth of computing power 
created a lot of activities on turbulence research. Here authors have elaborated a debated concept 
Loitsiansky’s type of invariant associated with turbulent study from analytical point. 
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INTRODUCTION 
 
Homogeneous isotropic turbulence is a kind of idealization for 
real turbulent motion, under the assumption that the motion is 
governed by a statistical law invariant for arbitrary translation 
(homogeneity), rotation or reflection (isotropy) of the 
coordinate system. This idealization was first introduced by 
Taylor (1935) and used to reduce the formidable complexity of 
statistical expression of turbulence and thus made the subject 
feasible for theoretical treatment. Up to now, a large amount of 
theoretical work has been devoted to this rather restricted kind 
of turbulence. However, turbulence observed either in nature 
or in laboratory has much more complicated structure. 
Although remarkable progress has been achieved so far in 
discovering various characteristics of turbulence, our 
understanding of the fundamental mechanism of turbulence is 
still partial and unsatisfactory. The assumption of similarity 
and self-preservation, which permits an analytical 
determination of the energy decay in isotropic turbulence, has 
played an important role in the development of turbulence 
theory for more than half a century. In the traditional approach 
to search for similarity solutions for turbulence, the existence 
of a single length and velocity scale has been assumed, and  
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then the conditions for the appearance of such solutions have 
been examined. Excellent contributions had been made to this 
direction by von Karman and Howarth (1938), who firstly 
deduced the basic equation and presented a particular set of its 
solutions for the final decaying turbulence. Later on, two 
Russian scholars, Loitsiansky (1939) and Millionshtchikov 
(1941), separately obtained the solutions for the Karman-
Howarth equation after the term related to the effect of the 
triple velocity correlation has been neglected (Ghosh and 
Ghosh, 1982; Ghosh, 2001). Their work was an extension of 
the “small Reynolds number” solution first given by von 
Karman and Howarth. Dryden gave a comprehensive review 
on this subject (Dryden, 1943). Detailed research on the 
solutions of the Karman-Howarth equation was conducted by 
Sedov, who showed that one could use the separability 
constraint to obtain the analytical solution of the Karman-
Howarth equation (Sedov, 1944). Sedov’s solution could be 
expressed in terms of the confluent hypergeometric function. 
Batchelor (1948) readdressed this problem under the 
assumption that the Loitsiansky integral is a dynamic 
invariant, which was a widely accepted assumption, but was 
later found to be invalid. Batchelor concluded that the only 
complete self-preserving solution which was intrinsically 
consistent existed at low turbulence Reynolds number, for 
which the turbulent kinetic energy is accordant with the final 
period of turbulent decay. Batchelor also found a self-
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preserving solution to the Karman-Howarth equation in the 
limit of infinite Reynolds number, for which the Loitsiansky 
integral is an invariant. Objections were later raised against 
using the Loitsiansky integral as a dynamic invariant. In fact, 
at high Reynolds number this integral can be proved to be a 
weak function of time Proudman and Reid (1954) and 
Batchelor and Proudman (1956). Saffman proposed an 
alternative dynamic invariant which yielded another power-
law decay in the limit of infinite Reynolds number (Hinze, 
1975). While the results of Batchelor and Saffman formally 
constitute complete self-preserving solutions to the inviscid 
Karman-Howarth equation, it must be kept in mind that they 
only exhibit partial self-preservation with respect to the full 
viscous equation. Later on, George (1992) revived this issue 
concerning the existence of complete self-preserving solutions 
in isotropic turbulence. In an interesting paper he claimed to 
find a complete self-preserving solution, valid for all Reynolds 
numbers. George’s analysis was based on the dynamic 
equation for the energy spectrum rather than on the Karman-
Howarth equation. Strictly speaking, the solution presented by 
George was an alternative self-preserving solution to the 
equations of Karman-Howarth and Batchelor since George 
relaxed the constraint that the triple longitudinal velocity 
correlation is self-similar in the classical sense. Speziale and 
Bernard (1992) reexamined this issue from a basic theoretical 
and computational standpoint. Several interesting conclusions 
have been drawn from their analysis. From the development of 
turbulence theory, it is known that the research on decaying 
homogeneous isotropic turbulence is one of the most important 
and extensively explored topics. Despite all the efforts, a 
general theory describing the decay of turbulence based on the 
first principles has not yet been developed (Skrbek and Stalp, 
2000). It seems that the theory of self-preservation in 
homogeneous turbulence has lots of interesting features which 
have not yet been fully understood and are worth of further 
study (Speziale and Bernard, 1992). This paper offers a short, 
but interesting feature of Loitsiansky invariant unified 
investigation of isotropic turbulence, based on the exact 
solutions of the Karman-Howarth equation. The statistical 
procedures of random fluctuation in a turbulent flow has been 
investigated by Taylor (1935), Robertson (Robertson, 1940) 
and many others. Karman and Howarth (1938) proposed the 
equation of translation for a second order velocity correlation 
of a homogeneous isotropic flow field. The equation 
constituting the relation of second order velocity correlation 
with the third order velocity correlation in collaboration with 
viscous damping denoted by Laplacian of second order 
velocity correlations.  
 
The tensorial equation of Navier Stocks equation along with 
the equation of continuity is given by 
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Applying the conditions isotropy and homogeneity, we have 
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Now the scalar form of equation (1) is given by 
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The equation (2) gives the scalar form of equation (1) in terms 

of two unknowns f(r,t) and h(r,t).  

 
Now assuming Ω(r,t) be the reactant concentration field 
variable ,the equation for decay can be written as 
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where D be diffusivity constant and K be the chemical reaction 

rate constant and lu  be the lth component of velocity at the 

point P(x1,x2,x3) at a time t. If it is assumed that the equation 
(3) is true for fluctuating field then we can write the same 

equation for the point  321 ,, xxxA   as 
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where  be the fluctuating part of the reactant concentration 

field variable at the point A at the time t and 1u   be the lth 

component of velocity at A at the same time t. 
 
Now taking the gradient of equation (4) for getting the vector 
field equation at the point A, we have 
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Similarly for another point B, we can write the same equation 
as 
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Tensorial equation related to the derived field and its 
simplification under the assumption of homogeneity and 
isotropy: 
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Now, taking iii xx  , we get 
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Taking the averages of respective terms the equation (6) can 
be written as 
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This equation can be written in tensorial form as 
 

        )8...(..........222
222

2

1

22

ijijl

i

ij RgradDTgraduRgradK
t




 






























 
Assuming the condition of homogeneity and isotropy and 
simplifying the equation (8), we have 
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Taking AB  in the perpendicular direction and putting i = j = 2 

or i = j = 3 and also using 0, 321   r , the new 

form of equation (9) may be written as 
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where R and M be scalars dependent on   2. r


  

 
For isotropic turbulence, the Karman-Howarth equation, which 
stems from the Navier-Stokes equations, fully describes the 
dynamics of the two-point velocity correlation. It does not, 
however, provide a very clear picture of the processes 
involved in the energy cascade. Some further insights can be 
gained by examining the Navier-Stokes equations in the wave-
numbers space. It is essential to examine the energy spectrum 
of isotropic turbulence based on the exact solutions. Also it is 
worthwhile to note that using the four different kinds of the 
two-point correlation functions, one can obtain the asymptotic 
behavior of energy spectrum, depending on the different 
distributions of turbulence parameters.          
               
Loitsiansky’s type of invariant as obtainable from equation 
(10) 
 
Now we are going to have an integral from the equation (10) 
which is equivalent to the scalar form of Karman-Howarth 
equation. A Loitsiansky type invariant can be obtained from 
the above equation as follows. 
 

Multiplying equation (10) by 
m  and integrating it with 

respect to t, we get 
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Assuming the case of isotropic turbulent flow field along with 

isotropic grad  field, we have 
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From equation (11) we can get 
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Considering the second possibility of equation (13) we can get 
the integral of Loitsiansky type neglecting the rate constant of 
chemical reaction of the couple field. 
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where grad  is termed as Loitsiansky invariant of the 

grad  field and it will remain constant in the absence of 

any internal chemical rate constant i.e. K=0. 
 
Numerical calculations and graphical representations for 
analysis 
 
Now we can write  
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where B is a very large quantity and I is the Loitsiansky type 

Invariant of grad field. 

 

Now, we can plot I against  uandu   respectively. 

 

 
 

Fig. 2. Loitsiansky type Invariant vs horizontal velocity 
component at A 

 

 
 

Fig. 3. Loitsiansky type Invariant vs. horizontal velocity 
component at B 

 
As evident from the Figures 2 and 3 for horizontal velocities at 
A and B denoted by u and v respectively, the Loitsiansky type 
Invariant remains constant except for the very small horizontal 
velocities.  
                                              

DISCUSSION AND CONCLUSION  
 
The investigation which has been presented in this paper 
indicates that the exact statistical theory for isotropic 
turbulence tractable based on the new exact solution of 
Karman-Howarth equation. The results obtained confirm the 
qualitatively consistency of the approximation and suggest a 
satisfactory quantitative agreement with experiment in the 
range of which is treated. The computation establishes the fact 
that Loitsiansky type Invariant remains constant during the 

couple field decay in absence of any internal chemical reaction 
except for very small horizontal velocities. Analytical study of 
present theory may be useful in understanding the nature of 
isotropic turbulence. A difficulty in comparing the present 
results with experiment is the dependence of the results on the 
essentially arbitrary choice of turbulent parameters and the 
initial conditions. Analytical study of present theory may be 
useful in understanding the nature of isotropic turbulence. A 
difficulty in comparing the present results with experiment is 
the dependence of the results on the essentially arbitrary 
choice of turbulent parameters and the initial conditions. 
 

 
 
To the extent that comparison is possible, the final times in the 
present calculation probably should be compared with early 
period of decay of grid turbulence. Subject to the reservations 
stated, the values of shown in this paper appears to be 
consistent with experiment values and other turbulence 
theories, such as DIA, EDQNM, qualitatively. Self-
preservation is an old topic, but the mathematical aside is still 
open. It is essential to lock of the exact analysis on the 
invariance of Karman-Howarth equation. Tennekes and 
Lumley’s remarks on invariance will help to understand this 
issue: Associated with, but distinct form, asymptotic 
invariance is the concept of “self-preservation” or local 
invariance. In simple flow geometries, the characteristics of 
the turbulent motion at the some point in time and space 
appear to be controlled mainly by immediate environment. The 
time and length scales of the flow may vary slowly 
downstream, but if the turbulence time scales are small enough 
to permit adjustment to the gradually changing environment, it 
is often possible to assume that the turbulence is dynamically 
similar everywhere if nondimensionalized with local length 
and time scales. One can seems to say that: in present paper, 
new appropriate length and kinetic energy scales may have 
been found. From mathematical aspects, the group invariant 
theory will lead a rich analysis on the meaning of what have 
done. The invariants of Karman-Howarth equation will be 
become new direction. At last, we note that : We have 
revisited the old problem firstly presented by Sedov (1982), 
and found richer mathematical structure in this paper 
compared to Sedov’s work. The results help us to offer a 
unified investigation of isotropic turbulence. Deep insights 
into internal structure of isotropic turbulence have been gained 
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based on a new complete set of the exact solutions of the 
Karman-Howarth equation. Simple comparison shows that the 
special solution found by Sedov (1982) belongs to one kind of 
our new set of solutions. Here, the author would like to 
emphasize the idea presented by Sedov at the end this paper, 
that is: At the first glance, not more than one function can be 
found from a single equation. Nevertheless, a careful 
consideration of the mathematical structure of this equation 
makes it possible to carry out an analysis of all possible cases 
and to find, to the accuracy of one basic constant α, all 
admissible solutions of the problem in question. This aspect 
and the appropriate mathematical analysis of the problem 
escaped the 3D LGA’s used for chemical attention of a 
number of scientists who developed the theory of reactions, 
other complex fluids turbulent motions in fluids and processed 
the experimental data (Sedov, 1982; Zheng Ran, 2006). This 
outcome is of great importance for many investigations e.g. 
atmospheric science, oceanic flow studies, industrial problems. 
Plume flow, flow in turbines or pipe flows particularly in 
chemical factories, power plants (thermal, nuclear) are of 
important areas of investigations where Loitsiansky’s invariant 
has notable constant to consider. 
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