

RESEARCH ARTICLE

SUPPORTING PROJECT MANAGEMENT WITH THE USE OF SOFTWARE ENGINEERING DATA

*Raed Abduljabbar Aljiznawi and Naseer Hwaidi Alkhazaali

School of electronic information and communication engineering, Huazhong University of Science and
Technology, #1037 Luoyu Road, Wuhan 430074, P.R. China

 ARTICLE INFO ABSTRACT

Based on software data from a software development project, a number of analyses have been carried
out. The results discovered the reasons for cost overruns, showed how effort planning could be refined
during development, and identified a relationship between the quality of the design documents and the
effort consumed for their production. This provided an insight into the development process and
establishes norms for interpreting metrics values obtained in future projects. In this way, it is a first step
for a company towards increasing its software development process maturity level.

Copyright©2016, Raed Abduljabbar Aljiznawi and Naseer Hwaidi Alkhazaali. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Several software development processes can be scamper in an
interrelated way to universal project management processes.
These processes exist primarily for supporting the
management of software development, and are generally
twisted toward addressing business concerns. A software
development process is irritable primarily with the production
features of software development, as divergent to the technical
aspect, such as software tools. The central activities of
software project management include planning, estimating,
tracking and decision making. It attributes of a mature
engineering discipline that the end-product quality level is
planned, reliable project plans are made, progress is tracked on
a detailed level, and estimates and decisions can be made,
based on well demented experience with previous successful
projects. This situation is not usually found in the relatively
new discipline of software engineering. One ground is that,
over the years, software engineering has adapted to a swift
technological improvement. This, together with the fact that
the end product is imperceptible, has led to a condition where
many software development projects came out in an ad hoc
fashion and very often fail to meet their success criteria. For
software development, the important management parameters
are project cast and duration, and product quality.

*Corresponding author: Raed Abduljabbar Aljiznawi,
School of electronic information and communication engineering,
Huazhong University of Science and Technology, #1037 Luoyu
Road, Wuhan 430074, P.R. China.

Measurements of cost and calendar time are fairly easy.
Control of these parameters is often attempted and is possible
within limits, although mast managers have difficulties
forecasting project cost and duration. Discussion of the quality
of the end product starts with defining the appropriate quality
factors and their measurement units. However, the next steps
of predicting, at the start of the project, the expected final
product quality factor levels, and controlling progress towards
specified quality factor levels during the project, are not
usually attempted. To improve the present state of affairs, it is
necessary, during a software development project, to collect
data that describe the different production processes, as well as
the resulting partial and intermediate products. Thereby, the
technical achievements, as well as the overall project status
and progress, can be assessed. By analyzing the data, a
quantitative basis for decisions can be established, with results
improving as norms for interpreting measurement values
become existing from finished projects. When selecting data
and analyses for use in a project, or across projects in an
organization, the emphasis should be on data that are simple
and easy to collect and analyses giving results that can easily
be understood. The benefits of introducing a software metrics
programme will then contain improved tracking and control of
a development project; early identification of atypical
measurement values, which may indicate a previously
undiscovered problem ;an accumulated set of data describing
completed projects, for use in planning and estimation of
future projects; the possibility of optimizing the software
development process, since the problem areas can be identified

ISSN: 0976-3376

Asian Journal of Science and Technology
Vol. 07, Issue, 06, pp.3031-3034, June, 2016

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF
SCIENCE AND TECHNOLOGY

Article History:

Received 18th March, 2016
Received in revised form
24th April, 2016
Accepted 14th May, 2016
Published online 30th June, 2016

Key words:

Development,
Process, Software metrics,
 Production.

and the results of changes to the existing process can be The
points require that norms for measurement values are available
and, in many cases, such norms must be derived from data
collected during previous projects. This paper describes a
number of data analyses, together with the conclusions that
were drawn from their results. The analyses were performed
on a very comprehensive data set collected during a 6 period
of a development project. The analyses confirmed how the
experience could help software companies to advance project
planning and monitoring, through the establishment of
company norms and by introducing specific changes to the
development process.

Monitoring of software development

The work reported here is one result of a concerted effort to
improve the prediction, monitoring and assessment of software
product quality. This was undertaken as part of the ESPRIT
project REQUEST (Reliability and Quality of European
Software Technology). In the area of software quality, work
has concentrated on developing COQUAMO (Constructive
Quality Model) (Petersen, 1987). The original idea of
COQUAMO was to transfer the approach that had been
successfully applied in COCOMO (Cost Model) (Boehm,
1981) to the field of software quality. COQUAMO has now
been developed into three models, the first of which is a
predictive model for software quality (using an approach
similar to that of COCOMO) to be applied in the early phases
of development. The second part consists of a monitoring
model for use during the project, and the third part is a quality
assessment model for the later stages in the development.
Introduction of the monitoring model (Kitchenham and
Walker, 1989) as part of COQUAMO enables it to maintain
the natural activities of a project manager during a software
development project. In this way, software metrics are utilised
in software project control activities, based on the general
project control prm cedure of setting quantitative targets,
measuring against these targets and responding to deviations.
The approach aims to work at a more detailed level and
include more metrics than other software metrics programmes
(Grady and Caswell, 1987; Duncan, 1988). In support of the
development of COQUAMO, large-scale data collection and
storage have been carried out for soft- ware metrics data as
part of Request (Dale, 1987). For the monitoring model, this
allows significant metrics and relationships to be identified. In-
depth analyses have been carried out for a number of project
data sets, with the aims of developing the model and
investigating the assumptions behind it, as well as
investigating the possibilities for automating the analyses of
project data. One set of analyses has been based on the ideas of
using anomalies (Eoerflinger and Basili, 1985), i.e. atypical
metric values, to detect the deviations that, at an early stage,
may indicate potential quality problems [SI. This paper shows
how detailed analyses of data from a large software
development project may be used to support general project
management, by establishing quantitative norms, and how they
may also be used to improve the software development process
in a company. Collection and analysis of software engineering
data from just one project allow initial norms to be established.
These can be used to support planning, as well as
interpretation of data, in subsequent projects. The data
collected from these projects may then be used to check, refine
and expand the set of norms.

To begin with, the empirical foundation for the norms is
actually weak, since they are based on the information
extracted from one project. It is, however, an advantage to
utilize this quantified experience as support in the next project,
rather than continuing a purely qualitative approach. As data
become available from more projects, the initial assumptions
concerning relationships between parameters can be verified
and the uncertainties of numerical values can be reduced. In
addition, the coverage of the norms can be expanded, and
gradually this will lead to a set of company norms, in which
the project manager can have confidence, and which will help
managers of future projects to learn from the experience
gained in previous projects. This process does not follow a
strict scientific approach, of first establishing a number of
hypotheses, then collecting a statistically adequate number of
datasets and finally verifying or rejecting the hypotheses based
on data analyses. In a commercial environment, the attitude
will be to analyze the first obtainable data set, draw
conclusions from (or base decisions on) the results of the
analyses and then introduce changes to optimize the
development process. The description below is concerned with
the first step a company must take in order to pioneer a
quantitative basis for the management of software
development projects. This includes the collection of a first
data set, which describes one of the company’s own projects,
together with a number of analyses of the data, leading to the
establishment of a first set of norms for software engineering
data.

Processes

The software development project from which data were
obtained can be characterized in the following way. The
product: the software product is a real-time information system
for use in a highly integrated, but geographically widespread,
environment. Requirements for total system reliability are very
high, since the consequences of severe faults are critical. It
was developed for one customer, consists of four subsystems
and has a total (all inclusive) size of 73 OOO lines of code.
The process: the development process followed an in- house
software development handbook prescribing a life- cycle,
documentation level and V & V activities, corresponding to a
standard third-generation development approach. In practice,
this was followed fairly strictly. This was the case, despite the
fact that it was the first time the project group had followed the
already existing development handbook, which was well tested
in use by other development groups. The development was
based on detailed plans, with effort allocated to tasks in the
range of 2W3Xl man-hours and follow-up supported by an
extensive data collection. The code was written in a high-level
dedicated application language and supported by dedicated
tools, as well as host and target environments. The personnel:
all developers were involved in most of the project, and the
majority had several job functions. The average experience
among the developers in the application area and in the
software development was fairly high. The project: the project
was carried out by %25 developers from one department at
one site, delivering a total of 19 working years within a
calendar time of two years. The period covered the activities
from analysis until the product was released to the customer.
The delivery took place on time, and the total cost (-overrun)
was kept within acceptable limits.

3032 Asian Journal of Science and Technology Vol.07, Issue, 06, pp.3031-3034, June, 2016

The data and data collection

As an integrated part of the development process and the
project management a large amount of data was collected. This
was supported by existing administrative procedures and
viewed by all involved as a necessity for successful project
management. The following data items were among those
made available to REQUEST, subject to the condition that the
identity of the provider remains undisclosed for commercial
reasons:

planned and actual effort for each development and inspection
task broken down, so that the planned task effort is in the
range of 600 man-hours; [7 size of documents (pages);
Information was made available so that it was possible to link
the effort consumed to produce a specific document or module
to its size, the effort consumed by V & V activities
(inspections), as well as the number of errors detected.

Collecting Software Engineering Data

The challenge of collecting software engineering data is to
make sure that the collected data can supply useful information
for project, process, and eminence management and, at the
same time, that the data collection process will not be a burden
on development teams. Therefore, it is important to regard
carefully what data to collect. The data must be based on well-
defined metrics and models, which are used to drive
improvements. Therefore, the goals of the data gathering
should be established and the questions of interest should be
defined before any data is collected. Data classification
schemes to be used and the level of precision must be carefully
specified. The collection form or template and data fields
should be pretested. The amount of data to be collected and the
number of metrics to be used need not be overwhelming. It is
more important that the information extracted from the data be
focused, accurate, and useful than that it be plentiful. Without
being metrics driven, over-collection of data could be
wasteful. Overcollection of data is quite common when people
start to measure software without an a priori specification of
intention, objectives, profound versus trivial issues, and
metrics and models. Gathering software engineering data can
be exclusive, especially if it is done as part of a research
program, For example, the NASA Software Engineering
Laboratory spent about 15% of their development costs on
gathering and handing out data on hundreds of metrics for a
number of projects (Shooman, 1983). For large commercial
development organizations, the relative cost of data gathering
and processing should be much lower because of economy of
scale and fewer metrics. However, the cost of data collection
will not at all be immaterial. Nonetheless, data collection and
analysis, which yields intelligence about the project and the
development process, is vital for business success. Indeed, in
many organizations, a tracking and data collection system is
often an integral part of the software design or the project
management system, without which the chance of success of
large and complex projects will be reduced.

Data analyses and results

Results are presented below from a number of analyses which
have been chosen so as to focus on the establishment of
company norms. The norms can be used to interpret

measurements made in future projects, and further data from
these can then be used to check and improve the norms.
Furthermore, some of the analyses give an insight into the
development process and show how the process may be
optimized. The analyses include detailed comparisons between
planned and actual effort for tasks occurring up to the end of
coding .The results are used to highlight the sources of
significant overruns in expenditure, when compared to the
planned cost, and to determine how this can be avoided in
future projects. Collection and analysis of software metrics
data, even from just one software development project, will
provide a company with an improved insight into their
development process. This insight will develop further as more
data sets become available and they are used to check and
improve the initial norms. The analyses of the data may
indicate that the underlying part of the process is performed in
an acceptable way. In such cases, the data may be used as
norms within the company for planning of future projects, or
so that data values from future projects can be compared to the
norms. When the average effort required to produce one, page
in a document is influenced by the complexity of writing the
document, the higher error rates recorded for high values of
man-hours/page are acceptable, and the trend may be used as a
norm as described above. On the other hand, the analyses may
reveal problems with an aspect of the development process and
possibly may also point to the cause of the problems. In such
cases, the increased insight may be used to plan and implement
changes to the development process, and to document the
impact of the changes by repeating the analyses on data from
projects carried out under the changed conditions. The severe
overruns seen for these tasks indicate that the effort allocation
should be improved to avoid gross underestimations for some
tasks (i.e. the planning process must be changed), rather than
to continue using the same planning process and then increase
the planned values by W%. The data, analyses and results
presented here will, in a future project, provide important
guidance on how to 0 0 0 By collecting and analyzing a
detailed data set, the company has taken a first step towards
increasing their software development process maturity level
and ultimately, their productivity and end-product quality. The
description of the data collection and analysis can therefore
serve as an example of the activities that many companies
must undertake in the near future, in order to build up
quantitative support for project management, in the form of
norms for interpreting data from future projects.

Acknowledgement

The authors acknowledge with sincere gratitude to the research
supervisor, project team members and those who peer
reviewed the article and for constructive suggestions.

REFERENCES

Boehm. B.W. 1981. ‘Software engineering economics’

(Prentice-Hall Inc.).
Dale, C. 1987. ‘The Request database for software reliability

and software development data’ in Directorate General
XI11 (Eds.): ‘Esprit ’87: achievements and impact
(Elsevier Science Publishers B.V., North-Holland).

Duncan, A. S. 1988. ‘Software development productivity tools
and metria’. Roc. 10th Int. Cod. on Software Engineering,
Sine pore, April, pp. 414

3033 Asian Journal of Science and Technology Vol.07, Issue, 06, pp.3031-3034, June, 2016

Eoerflinger, C.W., and Basili, V.R. 1985. ‘Monitoring
software development through dynamic variables’. IEEE
Tram., SE-11, (9), pp. 978-985

Grady, R.B., and Caswell, D.L. 1987. ‘Software metrics:
establishing a company-wide program’ @entice-Hall Inc.

Humphrey, W.S., and Sweet, W.L. 1987. ‘A method for
assess- ing the software engineering capability of
contractors’. Soft- ware Engineering Institute Technical
Report CMU/SEI-87-TR- 23.

Kitchenham, B.A., and Walker, J.C. 1989. ‘A quantitative
approach to monitoring software development’, Soft. Eng.
J., 4, (l), pp. 2-13

Kitchenham, B.A., Andersen, O., and Klim, S. 1989. ‘Inter-
preting software metria data: a case study’. Request docu-
ment, R1.10.3.

Petersen, P.G. 1987. ‘Software quality: The Constructive
Quality Modeling System’ Directorate General XI11
(Eds.): ‘ESPRIT ’86: Results and Achievements’ (Elsevier
Science Publishers B.V., North-Holland.

3034 Asian Journal of Science and Technology Vol.07, Issue, 06, pp.3031-3034, June, 2016

