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In this paper we introduce the notion of PO-k-ternary ideals, full PO-k-ternary ideal and characterize 
PO-k-ternary ideals.  We will prove some results about these PO-k-ternary ideals and full PO-k-ternary 
ideal. 
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INTRODUCTION 
 

The notion of semiring was introduced by Vandiver, (1934) in 
1934. In fact semiring is a generalization of ring. In 1971 
Lister, (1971) characterized those additive subgroups of rings 
which are closed under the triple ring product and he called 
this algebraic system a ternary ring. MadusudhanaRao, Siva 
Prasad and Srinivasa Rao, (2015), studied and investigated 
some results on partially ordered ternary semiring.  
 
Preliminaries 
 
Definition 2.1[ 6] : A nonempty set T together with a binary 
operation called addition and a ternary multiplication denoted 
by [ ] is said to be a ternary semiring if T is an additive 
commutative semigroup satisfying the following conditions : 
 
i) [[abc]de] = [a[bcd]e] = [ab[cde]], 
ii) [(a + b)cd] = [acd] + [bcd], 
iii) [a(b + c)d] = [abd] + [acd], 
iv) [ab(c + d)] = [abc] + [abd] for all a; b; c; d; e ∈T. 
 
 
*Corresponding author: Dr. Madhusudhana Rao,  
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Note 2.2[6]: For the convenience we write 1 2 3x x x  instead of 

 1 2 3x x x
 

Note 2.3[6]: Let Tbe a ternary semiring. If A, B and C are 
three subsets of T, we shall denote the set ABC= 

 : , ,abc a A b B c C    . 

Note 2.4[6]: Let T be a ternary semiring. If A, B are two 
subsets of T, we shall denote the set  

A + B =  : ,a b a A b B    and 2A = { a + a : a∈ A}. 

Note 2.5[6]: Any semiring can be reduced to a ternary 
semiring. 
 
Definition 2.6 [6]: A ternary semiring T is said to be a 
partially ordered ternary semiring or simply PO Ternary 
SemiringorOrdered Ternary Semiringprovided T is partially 
ordered set such that a ≤ b then   
 
(1) a + c ≤ b + c and c + a ≤ c + b,  
(2) acd ≤ bcd, cad ≤ cbd and cda ≤ cdb for all a, b, c, d∈ T. 
 
Throughout Twill denote as PO-ternary semiring unless 
otherwise stated. 
 
Theorem 2.7[6]: Let Tbe a po-ternary semiring and A ⊆T, B 
⊆T and C ⊆ T. Then (i) A ⊆(A], (ii) ((A]] = (A], (iii) 
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(A](B](C] ⊆(ABC] and (iv) A ⊆B ⇒A ⊆(B] and (v) A ⊆B 
⇒(A] ⊆(B], (vi) (A ∩ B] = (A] ∩ (B], (vii) (A ∪ B] = (A] ∪ 
(B]. 
 
Definition 2.8 [6]: A  nonempty subset A of a PO-ternary 
semiring T is a PO-ternary ideal of T provided A is additive 
subsemi group of T, ATT   A, TTA ⊆ A, TAT ⊆ A and (A] 

⊆ A. 
 

Theorem 2.9[8] : Let T be a PO-ternary semiring and A, B be 
two PO-ternary ideals of T, then the sum of A, B denoted by A 
+ B is a PO-ternary ideal of T where A + B = {x = a + b / a∈ 
A, b∈ B}. 
 
PO-k-Ternary Ideals 
 
In this section we will study a more restricted class of PO-
ternary ideals in a PO-ternary semi ring, which is called PO-k-
ternary ideals or subtractive, and we introduce some related 
results and examples. 
 
Definition3.1: A PO-ternary ideal A of a PO-ternary semi ring 
T is said to be PO-k-ternary ideal or subtractive provided for 
any two elements a∈ A and x∈ T such that a + x∈ A ⇒x∈ A. 
 
Example 3.2: In any PO-ternary semi ring of the set of real 
numbers R, every ideal A is PO-k-ternary ideal, since for any 
a∈ A, ∈ T such that a+ x∈ A then a+ x+ (-a) ∈ A, so x∈ A. 
 
Example 3.3: In the semi ring Z+ under the operations max 
and min, the set In= {1, 2, 3,…., n} is a PO-ternary k-ideal of 
Z+.  Since for any element a∈ In and x∈ Z+ such that a+ x= max 
{a, x} ∈ In, implies x∈ In. 
 

Example3.4: Consider the PO-ternary semi ring 0Z 
 under the 

usual addition, ternary multiplication and natural ordering ≤, 
let A = {-3k / k∈ N ∪ {0}}.  Then A is a PO-k-ternary ideal of 

0Z 
. 

 

Definition3.5: Let n, i being integers such that 2 ≤ n, 0 ≤ i<n, 
and B (n, i) = { 0, 1, 2, 3, ……., n – 1}.  We define addition 
and ternary multiplication in B (n, i) by the following 
equations. 
 

 if   1
      if   

       where ( ) mod ,  = ,
         1.

{x y x y n
l x y n

l x y m m n i
i l n

x y    
 

  
  

 
 

 if   1
      if   

       where ( ) mod ,  = ,
         1.

[ ] {xyz xyz n
l xyz n

l x y m m n i
i l n

xyz  

  

  



 
 
Note3.6: The set B (n, i) is a commutative PO-ternary semi 
ring under addition, ternary multiplication [ ] as defined in 
definition 5.1.5, and natural ordering. 
 
Example3.6: In note 5.1.6, n = 10, i = 7, then we have B (10, 7) = 
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and natural ordering, the operations 
defined as follows: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 3.7: The B (5, 2) = { 0, 1, 2, 3, 4} is a commutative 
PO-ternary semi ring such that 0 ≤ 1 ≤ 2 ≤ ≤ 3 ≤ 4 and the 
operations defined as follows: 
 

 

 
 
 
 
 
 
 
 
 
 
 
Then I1 = {0, 3} is a PO-k-ternary ideal of B (5, 2).  But I2 = 
{0, 2, 3, 4} is a PO-ternary ideal, but I2 is not PO-k-ternary 
ideal.  Since 2 ∈ I2, 2 + 1 ∈ I2, but 1 ∉ I2. 
 
Theorem 3.8: In a PO-ternary semi ring T, the set of zeroed Z 
(T) is a PO-ternary ideal of T. 
 
Proof: Let a, b∈ Z (T), then there exist x∈ T such that a + x = 
x + a = x and  b + x = x + b = x.  Now (a + b) + x = a + (b + x) 
= a + x = x⇒a + b∈ Z (T). Now let s, t∈ T.  Then stx = st(a + 
x) = sta + stx⇒sta∈ Z(T),  sxt = s (a + x) t = sat + sxt⇒sat∈ Z 
(T) and xst = (a + x)st = ast + xst⇒ast∈ Z (T). 
 
Therefore Z(T) is a ternary ideal of T. 
 
Suppose that a∈ Z (T), x∈ T such that x ≤ a.  x≤ a⇒x + a ≤ a + 
a⇒x + a ≤ a⇒x + a = a.  Therefore x∈  Z (T).  Hence Z (T) is a 
PO-ternary ideal of T. 
 

Theorem3.9: In a PO-ternary semiring T, the set of zeroed Z 
(T) is PO-k-ternary ideal of T. 
  
Proof: By theorem 3.8, Z (T) is a PO-ternary ideal of T. To 
show that Z (T) is a PO-k-ternary ideal of T, let t∈ T and a∈ Z 

 

+ 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 
1 1 2 3 4 5 6 7 8 9 7 
2 2 3 4 5 6 7 8 9 7 8 
3 3 4 5 6 7 8 9 7 8 9 
4 4 5 6 7 8 9 7 8 9 7 
5 5 6 7 8 9 7 8 9 7 8 
6 6 7 8 9 7 8 9 7 8 9 
7 7 8 9 7 8 9 7 8 9 7 
8 8 9 7 8 9 7 8 9 7 8 
9 9 7 8 9 7 8 9 7 8 9 

 

[ ] 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 8 9 
2 0 2 4 6 8 7 9 8 7 9 
3 0 3 6 9 9 9 9 9 9 9 
4 0 4 8 9 7 8 9 7 8 9 
5 0 5 7 9 8 7 9 8 8 9 
6 0 6 9 9 9 9 9 9 9 9 
7 0 7 8 9 7 8 9 7 8 9 
8 0 8 7 9 8 8 9 8 7 9 
9 0 9 9 9 9 9 9 9 9 9 

 

 
+ 0 1 2 3 4 

0 0 1 2 3 4 
1 1 2 3 4 2 
2 2 3 4 2 3 
3 3 4 2 3 4 
4 4 2 3 4 2 

 
[ ] 0 1 2 3 4 

0 0 0 0 0 0 
1 0 1 2 3 4 
2 0 2 4 3 2 
3 0 3 3 3 3 
4 0 4 2 3 4 
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(T) such that a + t∈ Z (T), therefore there exist  
x∈ T such that a + t + x = x.  But a + y = y for some y∈ T.  
Then we have x + y = a + t + x + a + y = t + (a + y + a + x) = t 
+ (y + a + x) = t + (y + x) = t + (x + y).  Therefore t∈ Z (T) and 
hence Z (T) of T is PO-k-ternary ideal of T. 
 
Theorem 3.10: Let T be a PO-ternary semiring and I be a left 
PO-ternary ideal of T and A, B be a non-empty subsets of T, 
Then (I : A, B) = { r∈ T : rab∈ I, for all a∈ A, b∈ B} is a left 
PO-ternary ideal of T.   
 
Proof : Let x, y∈ (I : A, B).  Then xab, yab∈ I for all a∈ A and 
b∈ B.  Then xab = s, yab = t for some s, t∈ I.  Then s + t = xab 
+ yab = (x + y)ab∈ I ⇒ (x + y) ∈ (I : A, B). Let p, q∈ T and x∈ 
(I : A, B).  x∈ (I : A, B) ⇒xab∈ I.  Since I is a left PO-ternary 
ideal of T.  Hence pq(xab) ∈ I ⇒ (pqx)ab∈ I ⇒pqx∈ (I : A, B).  
Now, suppose that p∈ T and x∈ (I : A, B) such that p ≤ x.  x∈ 
(I : A, B) ⇒xab∈ I.  p ≤ x⇒pab ≤ xab. pab ≤ xab, I is a left 
PO-ternary ideal of T and hence pab∈ I ⇒p∈ (I : A, B).  
Therefore p∈ T and x∈ (I : A, B) such that p ≤ x⇒p∈ (I : A, 
B).  Hence (I : A, B) is a left PO-ternary ideal of T.       
 
Theorem 3.11: Let T be a PO-ternary semiring and I be a 
lateral PO-ternary ideal of T and A, B be a non-empty subset 
of T, Then (I: A, B) = {r∈ T: arb∈ I, for all  
a∈ A, b∈ B} is a lateral PO-ternary ideal of T.   
 
Proof : Let x, y∈ (I : A, B).  Then axb, ayb∈ I for all a∈ A and 
b∈ B.  Then axb = s, ayb = t for some s, t∈ I.  Then s + t = axb 
+ ayb = a(x + y)b∈ I ⇒ (x + y) ∈ (I : A, B). Let p, q∈ T and x∈ 
(I : A, B).  x∈ (I : A, B) ⇒axb∈ I.  Since I is a lateral PO-
ternary ideal of T.  Hence p(axb)q∈ I ⇒paxbq = apxqb∈ I 
⇒pxq∈ (I : A, B).  Now, suppose that p∈ T and x∈ (I : A, B) 
such that p ≤ x.  x∈ (I : A, B) ⇒axb∈ I.  p ≤ x⇒apb ≤ axb. apb 
≤ axb, I is a lateral PO-ternary ideal of T and hence apb∈ I 
⇒p∈ (I : A, B).  Therefore p∈ T and x∈ (I : A, B) such that p ≤ 
x⇒p∈ (I : A, B).  Hence (I : A, B) is a lateral PO-ternary ideal 
of T. 
 
Theorem 3.12: Let T be a PO-ternary semiring and I be a 
right PO-ternary ideal of T and A, B be a non-empty subset of 
T, Then (I : A, B) = {r∈ T : abr∈ I, for all a∈ A, b∈ B} is a 
right PO-ternary ideal of T.   
 
Proof : Let x, y∈ (I : A, B).  Then abr, aby∈ I for all a∈ A and 
b∈ B.  Then abx = s, aby = t for some s, t∈ I.  Then s + t = abx 
+ aby = ab(x + y) ∈ I ⇒ (x + y) ∈ (I : A, B). Let p, q∈ T and x∈ 
(I : A, B).  x∈ (I : A, B) ⇒abx∈ I.  Since I is a right PO-ternary 
ideal of T.  Hence (xab)pq = ab(xpq) ∈ I ⇒xpq∈ (I : A, B). 
Now, suppose that p∈ T and x∈ (I : A, B) such that p ≤ x.  x∈ 
(I : A, B) ⇒abx∈ I.  p ≤ x⇒abp ≤ abx.   abp ≤ abx, I is a right 
PO-ternary ideal of T and hence abp∈ I ⇒p∈ (I : A, B).  
Therefore p∈ T and x∈ (I : A, B) such that p ≤ x⇒p∈ (I : A, 
B).  Hence (I : A, B) is a right PO-ternary ideal of T. 
 
TheoreM3.13: Let T be a PO-ternary semiring and I be a PO-
ternary ideal of T and A, B be a non-empty subset of T, Then 
(I: A, B) = {r∈ T: rab, arb, abr∈ I, for all  
a∈ A, b∈ B} is a PO-ternary ideal of T. 

Proof: By theorems 3.10, 3.11, 3.12, it is easy to verify that (I: 
A, B) is a PO-ternary ideal of T. 

Theorem3.14: Let T be PO-ternary semiring and I be a PO-k-
ternary ideal of T and A be a non-empty subset of T, then (I: 
A, B) = { r∈ T : rba, rab, arb∈ I, for all a∈ A, b∈ B} is a PO-
k-ternary ideal of T. 
 
Proof:  By theorem 3.13, (I: A, B) is a PO-ternary ideal of T. 
Let r∈ (I : A, B), y∈ T such that r + y∈ (I : A, B) then rba, arb, 
abr∈ I, and (r + y)ba, ab(r + y), a(r + y)b∈ I for all a∈ A, b∈ 
B.  Then rba + yba = (r + y)ba∈ I which is PO-k-ternary ideal. 
Hence yba∈ I.similarly, abt∈ I and aby∈ I.  Therefore y∈ (I: A, 
B).  Hence (I : A, B) is a PO-k-ternary ideal of T. 
 
Definition3.15: A PO-ternary semiring T is said to be E-
inverse, provided for every a∈ T, there exist x∈ T such that a 
+ x∈ E+ (T).  
 
Note 3.16: In a PO-ternary semiring T the set of all additive 
idempotents E+ (T) is not a PO-k-ternary ideal. 
 
Example3.17: Let T = {0, a, b} such that 0 ≤ a ≤ b and define 
the addition, ternary multiplication on T as 
 
 
 
 
 
 
 
 
 
 
 
Then T is a additive inverse PO-ternary semiring under the 
operations.  Moreover E+ (T) = {0, b} is a PO-ternary ideal of 
T.  But a + b = b∈ E+ (T) and a∉ E+ (T) and hence E+ (T) is not 
PO-k-ternary ideal. 
 
Note3.18: The sum of two PO-k-ternary ideals need not be a 
PO-k-ternary ideal. 
 
Example3.19: Consider the PO-ternary semiring of positive 

integers with zero 0Z 
 under the usual addition and ternary 

multiplication.  Then 2 0Z 
 and 3 0Z 

 are PO-k-ternary ideals 

of 0Z 
.  But 2 0Z 

 + 3 0Z 
 = 0Z 

\ { 1} is not a PO-k-ternary 

ideal.  Indeed 1 + 2 = 3, where 2, 3 ∈ 2 0Z 
 + 3 0Z 

, but 1 ∉ 2

0Z 
 + 3 0Z 

. 

 

Theorem3.20: Let T be a PO-ternary semiring.  If A is a PO-
ternary ideal of T such that A = I ∪ J, where I, J are PO-k-
ternary ideals, then A = I or A = J. 
 
Proof : Since A = I ∪J, then I ⊆Aand J ⊆A.  Now suppose A 
≠I, and A ≠J, then there exist x, y ∈Asuch that x ∈I, x ∉J,  y ∈J, 
y ∉I, but x + y ∈A= I ∪J, so x + y ∈Ior x + y ∈J, now if x + y 
∈I, then y ∈Ias Iis PO-k-ternary ideal, contradiction.  Also if  
x + y ∈Jthen x ∈Jas Jis PO-k-ternary ideal, contradiction. 
Hence A = I or A = J.  
 
 

 

+ 0 a b 

0 0 a b 
a a 0 b 
b b b b 

 
[ ] 0 a b 

0 0 0 0 
a 0 0 0 
b 0 0 b 
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Full Po-K-Ternary ideals 
 
In this section, we will study more restrictions on the po-k-
ternary ideal and the PO-ternary semiring.  We study full PO-
k-ternary ideal in additive inversive ternary semirings, so T 
denotes an additive inversive ternary semiring. 
 
Definition4.1: A PO-ternary semiring T is said to be 

additively regular if for each a∈ T, there exists an element 
#a

∈ T such that a = a + 
#a  + a. 

 
Theorem4.2:  Let T be a PO-ternary semiring  and if a is an 

additively regular element of T.  Then the element 
#a  is 

unique. 
 
Proof: Assume that b, c are element of T such that a + b + a = 
a = a + c + a, b + a + b = b and c + a + c = c.  Then b = b + a + 
b = b + a + c + a + b = b + a + b + a + c = b + a + c 
= c + b + a = c + c + b + a + a = c + c + a + b + a = c + c + a = 

c + a + c = c. Therefore b = c= 
#a . 

 
Definition4.3: A PO-ternary semi ring T is said to be 
additively inverse PO-ternary semi ring if for each a∈ T, there 
exists a unique element b∈ T such that a = a + b + a and b = b 
+ a + b. 
 
Note4.4: In an additively inverse PO-ternary semi ring the 

unique inverse b of an element a is usually denoted by a . 
 
Definition4.5: A PO-k-ternary ideal A of a PO-ternary semi 
ring T is said to be a full PO-k-ternary ideal provided the set 
of all additive idempotent of T, E+ (T) contained in A. 
 
Example 4.6: In any PO-ternary ring R every ideal A is a full 
PO-k-ternary ideal. Since 0 is the only additive idempotent 
element in R which belongs to any PO-ternary ideal A of R. 
So A is full PO-k-ternary ideal. 
 
Example4.7: In Z × Z+ = { (a, b): a, b are integers b> 0}, 
define (a, b) + (c, d) = (a + c, lcm (b, d)), [(a, b) (c, d) (e, f)] = 
(ace, gcd (b, d, f)) and (a, b) ≤ (c, d) if a ≤ c and b ≤ d.  Then Z 
× Z+ is an additive inverse PO-ternary semiring, since for any  
(a, b), (c, d), (e, f) ∈Z × Z+ 
 
Additive Commutative 
 
(a, b) + (c, d) = (a + c, lcm (b, d)) = (c + a, lcm (d, b)) = (c, d) 
+ (a, b). 
 

Additive Associative 
 

((a, b) + (c, d)) + (e, f) = ((a + c, lcm (b, d)) + (e, f)                                                                           
= (((a + c) + e, lcm (lcm (b, d), f)) 
= ((a + (c + e), lcm (b, lcm (d, f))) 
= (a, b) + ((c + e), lcm (d, f)) 
= (a, b) + ((c, d) + (e, f)). 

 
Multiplicative associative: Similarly as additive associative 
 
Distributive 
 
(a, b).(c, d).((e, f)) + (g,h)) = (a, b).(c, d). ((e + g, lcm ( f, h)) 

                                    = (a, b).(c.(e + g), gcd (d, lcm( f, h))) 
                                       = (a.c.(e + g),gcd(b, gcd(d, lcm(f, h)))) 
                                      = (a, b).(c, d).(e, f) + (a, b).(c, d).(g, h). 
 
Similarly (a, b).((e, f)) + (g,h)). (c, d) = (a, b).(e, f).(c, d) + (a, 
b).(g, h).(c, d) and ((e, f)) + (g,h)). (a, b).(c, d) = (e, f).(a, b).(c, 
d) + (g,h).(a, b).(c, d). 
 
Additive inverse: For any (a, b) ∈ Z × Z+, there exist a unique 
(- a, b) ∈ Z × Z+ such that  
 
(a, b) + (-a, b) + (a, b) = (a + - a + a, lcm (b, b, b)) = (a, b),  
(- a, b) + (a, b) + (- a, b) = (- a + a + -a, lcm (b, b, b)) = (- a, 
b). 
Moreover, the set A = {(a, b) ∈Z× Z+: a = 0, b ∈Z+} is a full 
PO-k-ternary ideal of Z × Z+.  Since E+ (Z × Z+) = {0} × Z+⊆ 
A, and for any (0, b) ∈ A, (c, d) ∈ Z × Z+ such that  
(0, b) + (c, d) = (c, lcm(b, d)) ∈A, then c = 0, and hence (c, d) 
∈ A. 
 
Theorem4.8: The intersection of two full PO-k-ternary ideals 
of a PO-ternary semiring T is a full PO-k-ternary ideal of T. 
 
Proof: Let A, B be two full PO-k-ternary ideals of T.  Then by 
theorem 3.5.7, A ⋂ B is a PO-ternary ideal of T which is full 
as E+(T) ⊆ A and E+(T) ⊆ B.  Now, let t∈ T such that  
a + t∈ A ⋂ B for some a∈ A ⋂ B, then a + t∈ A ⋂ B, a∈ A 
and a + t∈ A ⋂ B, a∈ B, then t∈ A, t∈ B as A, B be PO-k-
ternary ideals.  Therefore t∈A⋂ B. 
 
Theorem4.9: Every PO-k-ternary ideal of a PO-ternary 
semiring T is an inversive PO-ternary subsemiring of T. 
 
Proof: Obviously that every PO-ternary ideal of T is PO-
ternary subsemiring of T.  Let a∈ A, then a∈ T.  Therefore 

there exist an a ∈ T such that a = a + a + a = a + ( a + a) ∈ 

A.  But A is PO-k-ternary ideal and a∈ A, so a + a ∈ A. 

Again A is PO-k-ternary ideal and a∈ A, so a ∈ A.  Therefore 
A is an inverse PO-ternary subsemiring of T. 
 
Definition4.10: Let A be a PO-ternary ideal of an additive 
inversive PO-ternary semiring T.  We define k-closure of A, 

denoted by A by:  

A  = {a∈T :a+ x∈ A for some x∈ A}. 
 

Theorem4.11: Let T be a PO-ternary semiring and A be a PO-

ternary ideal of T, then A  is a PO-k-ternary ideal of T. 

Moreover A ⊆ A  and (A] ⊆ ( A ].  
 

Proof: Let a, b∈ A , then a + x, b + y∈ A for some x, y∈ A. 
Now (a + b) + (x + y) = (a + x) + (b + y) ∈ A.  But x + y∈ A 

and hence a + b∈ A .   
 
Next s, t∈ T, then sta + stx = st(a + x) ∈ A.  But stx∈ A, 

therefore sta∈ A .  Similarly sat and ast∈ A .  Hence A  is a 

ternary ideal of T.  Now let a ∈ A  and t∈ T such that t ≤ a. a ∈

A ⇒a + x∈ A for some x∈ A. Since A is PO-ternary ideal of 

T, so t ≤ a⇒t + x ≤ a + x.  Since a + x∈ A ⇒t + x∈ A ⇒t∈ A  
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and hence A  is a PO-ternary ideal of T.  To show that A  is a 

PO-k-ternary ideal, let c, c + d∈ A , then there exist x and y in 
A such that c + x∈ A and c + d + y∈ A.  Now d + (c + x + y) = 

(c + d + y) + x∈ A ⇒c + d + y∈A.  Hence d∈ A .  Therefore A  
is a PO-k-ternary ideal.  Finally, since a + a∈ A for all a∈ A, it 

follows thatA ⊆ A .  By theorem 2.7, (A] ⊆ ( A ]. 
 
Lemma4.12: Let T be a PO-ternary semiring and A be a PO-

ternary ideal of T.  Then A = A if and only if A is a PO-k-
ternary ideal of T. 
 

Proof: Suppose that A = A , then by theorem 4.11, A  is a 
PO-k-ideal o f  T, and hence A is PO-k-ideal of T.  Conversely, 
suppose that A is a PO-k-ternary ideal of T.  Again by theorem 

4.11, A ⊆ A .  On the other hand, let a∈ A  then a + x∈ A for 
some x∈ A.  But A is a PO-k-ternary ideal of T and x∈ A 

implies that a∈ A.  There fore A ⊆ A.  Hence A = A . 
 
Lemma4.13: Let T be a PO-ternary semiring and A, B be two 

PO-ternary ideals of T such that A ⊆ B, then A B .  
 
Proof : Let A, B be two PO-ternary ideals of T such that A ⊆ 

B, let a∈ A , then a + x∈ A for some  
x∈A, but A ⊆ B and hence a + x∈ B for some x∈ B, therefore 

a∈ B .  Hence A B . 
 
Lemma4.14: Let T be a PO-ternary semiring and A be a PO-

ternary ideal of T.  Then A  is the smallest PO-k-ternary ideal 
of T containing A. 
 
Proof: Let B be a PO-k-ternary ideal of T such that A ⊆ B, let 

x∈ A .  Then x + a = b for some a, b∈ A.  Since A ⊆ B and B is 

a PO-k-ternary ideal of T, then x∈ B.  There fore A ⊆ B. 
 
Lemma4.15: Let T be a PO-ternary semiring and A, B be two 

full PO-k-ternary ideals of T, then A B  is a full PO-k-ideal 

of T such that A ⊆ A B  and B ⊆ A B .  
 
Proof : By theorem 2.9, A + B is a PO-ternary ideal of T. then 

by theorem 4.11, A B is a PO-k-ternary ideal of T and A + B  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⊆ A B .  Now E+(T) ⊆ A and E+(T) ⊆ B.  so far any e∈ 

E+(T), e + e = e.  Therefore E+(T) ⊆ A + B ⊆ A B .  This 

implies that A B is a full PO-k-ternary ideal of T.  Finally, 

let a∈ A, then a = a + a + a = a + ( a + a) ∈ A + B as ( a + 

a) ∈ E+(T) ⊆ B.  Hence A ⊆ A B .  Similarly B ⊆ A B . 
 

Conclusion  
 
In this paper mainly we studied about po-k-ternary ideals and 
full po-k-ternary ideals in PO-ternary semiring. 
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