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 ARTICLE INFO    ABSTRACT 
 

 

In this paper, the solution system of differential algebraic equations (DAES). A novel hybrid method 
for the solution of ordinary and partial differential equations is presented here. The method creates trial 
solutions in Genetic Algorithms, neural network form using a scheme based on grammatical evolution. 
The trial solutions are enhanced periodically using a local optimization procedure. The proposed 
method is tested on a series of ordinary differential equations, systems of ordinary differential equations 
as well as on partial differential equations with boundary conditions and the results are reported. The 
goal is to obtain accurate solution with reduced calculus effort by comparing the solution of the DAES 
obtained from Genetic algorithms, A domian decomposition method and neural network approach , A 
domain decomposition method and pade approximation to this problem is very close to the exact 
solution. An illustrative numerical method is presented for the proposed method. 
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INTRODUCTION 
 

A series of problems in many scientific field scan be modelled with the use of differential equations such as problems in physics 
(Byrne and Ponzi, 1988; Ercan Celik and Mustafa Bayram, 2004; Chuili Sun and Juergen Hahn, 2005; Deuflhard et al., 1987; 
Hairer and Wanner, 1991), chemistry (Lagaris et al., 1998; Narendra and Parathasarathy, 1990; El-sayed Wahed, 2008), biology 
(Ercan Çelik et al., 2006; Susmita Mall and Chakraverty, 2013), economics (Ioannis G.Tsoulos et al., 2009), etc. Due to the 
importance of differential equations many methods have been proposed in the relevant literature for their solution such as Runge 
Kutta methods (Ioannis G.Tsoulos et al., 2009; Melike Karta and Ercan C. elik, 2012) Predictor–Corrector (El-sayed Wahed, 
2008; Susmita Mall and Chakraverty, 2013), radial basis functions (Narendra and Parathasarathy, 1990; Chakraverty, 2013), 
artificial neural networks (Hairer and Wanner, 1991; Narendra and Parathasarathy, 1990), models based on genetic programming 
(Ioannis G.Tsoulos et al., 2009; Melike Karta and Ercan C. elik, 2012), etc. In this article a hybrid method utilizing constructed 
feed-forward neural networks by grammatical evolution and a local optimization procedure is used in order to solve ordinary 
differential equations (ODEs),systems of ordinary differential equations(SODEs) and partial differential equations(PDEs). The 
constructed neural networks with gram- matical evolution have been recently introduced by Tsoulos et al. [30] and it utilizes the 
well-established grammatical evolution technique (Melike Karta and Ercan C. elik, 2012) to evolve the neural network topology 
along with the network parameters. The method has been tested with success on a series of data-fitting and classifications 
problems. In this article the constructed neural network methodology is applied on a series of differential equations while 
preserving the initial or boundary conditions using penalization. The proposed method does not require the user to enter any 
information regarding the topology of the network. Also, the new method can be used to solve either ODEs or PDEs and it can be 
easily parallelized. This idea is similar to the cascade correlation neural networks introduced by Fahlman and Lebiere [13] in 
which the user is not required to enter any topology in formation. However, the method for selecting the network topology differ 
since the proposed algorithms a stochastic one. In the proposed method, the advantage of using an evolutionary algorithms that the 
penalty function (use df or initial or boundary conditions) can be incorporated easily into the training process. Neural Networks 
have been employed before to solve DAES (Byrne and Ponzi, 1988) as well as eigen value problems (Ercan Celik and Mustafa 
Bayram, 2004).  
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The cases treated in the above mentioned articles were for simple finite or extended to infinity orthogonal box boundaries. 
However when one deals with realistic problems, as for instance in modeling the human head-neck system (Chuili Sun and 
Juergen Hahn, 2005) or the flow and mass transfer in chemical vapor deposition reactors (Deuflhard et al., 1987), the DAES 
cannot be described in terms of simple geometrical shapes, that in turn would have allowed for a simple modeling scheme. In this 
article we propose a method capable of dealing with such kind of arbitrarily shaped boundaries. As before (Byrne and Ponzi, 
1988; Celik and Mustafa Bayram, 2004), our approach is based on the use of feed forward artificial neural networks (ANNs) 
whose approximation capabilities have been widely acknowledged (Narendra and Parathasarathy, 1990; El-sayed Wahed, 2008). 
More specifically, the proposed approach is based on the synergy of two feed forward ANNs of different types: a multilayer 
perception (MLP) as the basic approximation element and a radial basis function (RBF) network for satisfying the BCs, at the 
selected boundary points. In addition, our approach relies on the availability of efficient software for multidimensional 
minimization (Hairer and Wanner, 1991) that is used for adjusting the parameters of the networks. 
 
A solution to differential equation problems based on ANNs exhibits several desirable features: 
 
• Differentiable closed analytic form. 
• Superior interpolation properties. 
• Small number of parameters. 
• Implementable on existing specialized hardware (neuron processors). 
• Also efficiently implementable on parallel computers. 
 
In the next section we describe the proposed method for neural network, while in Section 2, described solving system of 
differential equations by using genetic algorithms. Section 3, we discuss implementation procedures of the Pade series method. In 
section 4 we illustrate Adomian decomposition method. Finally section 5 contains numerical example and we compare our results 
to analytically known ones and given a conclusion. 
 
Genetic Algorithms  
 
A differential algebraic equation has the form 
 
  Ψ (y, y', x) = 0,         ………………….. (1) 
 
With initial conditions (IC) 
 

 Ψ* (x0) = y0,            








dx

d
  Ψ*(x0) = y1,   

   
Where Ψ and Ψ*  are both vector functions for which we assumed sufficient differentiability and the initial values to be consistent, 
i.e. 
 
Ψ (y0, y0

1, x0) = 0       ……………..(2) 
 
The above DAE can be converted into a system of ODE as 
 

dx

dψ*
i

 = fi (x, yi) (i = 1, 2, ………, n)    ………………(3) 

 
With initial condition 
 
Ψi (0) = Ai 

 
Thus the solution of the system of ODE is equivalent to the solution of DAE system. 
 
Method Description 
 
In this section a brief description of the grammatical evolution algorithm is given. The main step sof the proposed algorithm are 
outlined with the steps for the fitness evaluation for the case sof ODEs. 
 
Grammatical Evolution 
 
Grammatical evolution is an evolutionary technique that can produce code in any programming language requiring the grammar 
of the target language in BNF syntax and some proper fitness function. This technique has been used with success in many 
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scientific fields such as symbolic regression [13], by replacing non terminal symbols with the right hand of the selected production 
rule. The selection is performed in two steps: 
 
- We read an element from the chromosome (with value V). 
- We select the rule according to the scheme 
 
Rule = V mod NR 
           
Where NR is the number of rules for the specific non-terminal symbol. The process of replacing non terminal symbols with the 
right hand of production rules is continued until either a full program has been generated or the end of chromosome has been 
reached. In the latter case we can reject the entire chromosome or we can start over (wrapping event) from the first element of the 
chromosome. If the limit of the wrapping events is reached the chromosome is rejected by assigning to it a large fitness value, 
which prevents the chromosome to be used in the crossover procedure. In the proposed algorithm the limit of wrapping events 
wassetto2.As an example of the mapping procedure of the grammatical evolution consider the BNF grammar shown in Fig. 1. The 
number in parentheses denotes the sequence number of the corresponding production rule to be used in the mapping procedure. 
Consider the chromosome x=[9,8,7,6,16,10,17,23,8,14]. The step soft he mapping procedure are listed in Table1. The final 
outcome of these steps is the expression 3+sin(x). 
 
Algorithm decription 
 
The proposed method is baased on an evolutionary algorithm ,a stochastic process whose basis lies in the biological evolution 
The  grammar of the proposed method 
 
S: : = <expr˃     (0) 
 
<expr˃: : = (<expr˃ <op˃ <expr˃ )        (0) 
 
│<func> (<expr˃ )                (1) 
 
│   <terminal˃                    (2) 
 
<op> : := + (0) 
 
│  - (1) 
│  * (2) 
│  / (3) 
<func>  : := sin    (0) 
│  cos  (1) 
│  exp (2) 
│  log  (3) 
<digit ˃: :=      0     (0) 
│ 1 (1) 
│ 2 (2) 
│ 3 (3) 
│ 4   (4) 
│ 5   (5) 
│ 6   (6) 
│ 7 (7) 
│ 8 (8) 
│ 9   (9) 
<terminal> : :=<xlist>       (0)  
 │<digitlist>.<digitlist>    (1) 
<xlist>: :=x1 (0) 
│ x2   (1) 
│x3   (2) 
<digitlist>: :=<digit>    (0) 
│<digit>.<digitlist>    (1) 
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Table 1.  An example of the mapping procedure 
 

String chromosome operation 

<expr ˃         9, 8, 7,6,16,10,17,23,8,14 9 mod 7 = 2 
<func˃( <expr˃ )                   8,7,6,16,10,17,23,8,14   8 mod 4 = 0 
sin(<expr ˃)                              7,6,16,10,17,23,8,14 7mod 7 = 0 
sin(<expr˃ <op˃ <expr˃) 6, 16,10,17,23,8,14 6 mod 7 = 6 
sin(x <op˃ <expr˃ )                 16,10,17,23,8,14     16 mod 4 = 0 
sin(x) + <expr˃      10, 17,23,8,14                           10 mod 7 = 3 
sin(x) + < digit˃ 17, 23,8,14      17 mod 10=7 
sin(x) + 3                                 23,8,14  

  
Algorithm along with a penalty function which is used in order to represent the boundary or initial conditions of the ordinary 
differential equations, the main steps of the algorithm are as follows: 
 
 
Algorithm 

Input : function �(�), lower , upper bound [l b], Number of variable �,� 
Repeat  
  Solve the differential equation by [t,sol]=ode45(f,[l b],N) 

  [x , f]= Genetic_algorithm(���, �, [�	�]) 

��� = � − ���� 

Until ��� < � 
Plot the result with exact 
 
Solution of DAES by using neural network 
 
In this approach new feed forward neural network is used to transfer the transfer the trial solution of equation (3) to the neural 
network solution of (3). The trail solution is expressed as the difference of two terms as below(8). 
 
 (Ψi)a (x) = Ai + xNi (xj, hij),    (i, j = 1, 2, ……….., n)                  ………………………..(4) 
 
 The first term satisfies the IC and contains no adjustable parameters. The second term employs a feed forward neural 
network and parameters hij correspond to the weights of the neural architecture. Consider a multilayer perception with n input 
units, one hidden layer with n sigmoidal units and a linear output unit. The extension to the case of more than one hidden layer can 
be obtained accordingly. For a given input vector, the output of the network is 
 

     



n

1j
ijijii

n

1i
1ij uxhZ          where          Zσ VN  

 
Wij denotes the weight from the input unit j to the hidden unit i , Vi denotes the weight from the hidden unit i to the output, ui 
denotes bias of the hidden unit i and (z) is the sigmoidal transfer function. 
 
The error quantity to be minimized is given by 
 

 












n

1i

2

iai
ia

r )(xψx,f
dx

)(xdψ
E                        ……………………… (5) 

 
The neural network is trained till the error function (5) becomes zero. Whenever Er becomes zero, the trail solution (4) becomes 
the neural network solution of the equation (3). 
 
Structure of the FFNN 
 
The architecture consists of n input units, one hidden layer with n sigmoidal units and a linear output. Each neuron produces its 
output by computing the inner product of its input and its appropriate weight vector. During the training, the weights and biases of 
the network are iteratively adjusted by Nguyen and Widrow rule. The neural network architecture is given in the Fig. 1 for 
computing Nij. The neural network algorithm was implemented in MATLAB on a PC, CPU 1.7 GHz for the neuro computing 
approach to solve DAES. 
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Figure 1. Neural network architecture 
 
 
Neural network Algorithm 
    
Step 1: Feed the input vector xj. 
 
Step 2: Initialize randomized weight matrix wij and bias ui. 
 

Step 3: Compute 



n

j
ijiji uxhZ

1

 

 
Step 4: Pass Zi into n sigmoidal functions 
 
Step 5: Initialize the weight vector Vi from the hidden unit to output unit. 
 

Step 6: Calculate   


n

1i
iiij ZVN  

 
Step 7: Compute purelin function (Nij) 
 
Step 8: Repeat the neural network training till he following error function 
 

 












n

1i

2

iai
ia

r )(xψx,f
dx

)(xdψ
E  

 
Description of the Pade Series Method 
 
A system of initial value differential algebraic equations (DAEs) can be written in (1) 
 
 The solutions of (1) can be assumed that 
 
y = y0 + ex,        …………………………….(6) 
 
where e is a vector function which is the same size as y0.  
 
Power series of solution for DAEs 
 
We define another type of Power series in the form 
 
f(x) = f0 + f1x + f2x

2 +…+ (fn + p1e1 + …+ pmem)xn                                              ….……………………… (7) 
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where p1, p2, . . . ,pm are constants. e1, e2, . . . , em are bases of vector e, m is the size of vector e. y is a vector with m elements in 
(6). Every element can be represented by the Power series in (7). 
 
yi = yi,0 + yi,1x + yi,2x

2 + …+ eix
n .               ……………………………..(8) 

 
where yi is the ith element of y. Substituting (8) into (1), we can get the following: 
 
fi = ( fi,n + pi,1e1 + …+ pi,mem)xn-j  + Q(xn-j+1),              ……………………………..(9) 

 
where fi is the ith element of f (y, y', x) in (1) and j is 0 if f(y, y', x) have y', 1 if do not. From (9) , we can determine the linear 
equation in (6) as follows: 
 
Ai,j = pi,j,  Bi = -fi,n.                                                                                 ……………………………(10) 

 
Solving this linear equation, we have ei, i = 1,…,m. Substituting ei into (2.2), we have yi, i = 1,…,m. which are polynomials of 
degree n. Repeating this procedure from (7) –(9), we can get the arbitrary order Power series of the solution for DAEs in (1). 
Let stepsize of x be h and substituting it into the Power series of y and y', we have y and y' at x = x0  + h. If we repeat the above 
procedure, we have numerical solution of DAEs in (1) (Byrne and Ponzi, 1988; Ercan Celik and Mustafa Bayram, 2004; El-sayed 
Wahed, 2008). 
 
Pade series 
 
The Power series can be transformed into Pade' series easily. Pade' series is defined in the following: 
 

a0 + a1x + a2x
2 +…= 

L
L10

M
M10

xq...xqq1

xp...xpp




                ……………………………  (11) 

 
Multiply both sides of (11) by the denominator of right-hand side in (11) and compare the coefficients of both sides in (11). We 
have 
 




 
M

1k
lkkll pqaa , l=1,…,M,                          ………………………………(12) 

 




 
L

1k
lkkll pqaa  , l=M+1,…,M+L,              ……………………………….(13) 

 
Using Adomian Decomposition Method  
 

A system of differential equations can be considered as (1) We can present the system (1), by using the i
th

 equation as:     
 
Lyi =fi (x, y1, ….., yn) i = 1, 2, …., n                             …………………………………..(14) 
 

where L is the linear operator d/dx with the inverse L
−1 

= ∫
0

x

 
(.)dx. Applying the inverse operator on (14) we get the following 

canonical form, which is suitable for applying Adomian decomposition method. 

 

    dxy,.....,y,xf0yy
x

0
n1iii  . i = 1, 2, …., n            ……………………………...(15) 

 
As usual in Adomian decomposition method the solution of Eq.(15) is considered to be as the sum of a series:  

 







0j

j,ii fy        ……………………………(16) 

 
And the integrand in the Eq.(16), as the sum of the following series:  
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fi(xi, y1, …, yn) =  


 0j
j,i1,ii,0j,i f,...,f,fA     ……………………………..(17) 

 
Where Ai,j (fi,0, fi,1, …, fi,n) are called Adomian polynomials [6]. Substituting (16) and (17) into (15). We get  

 

     









0j

x

0
0j

j,i1.i0,ij,iij,i f.....,,f,fA0yf  

 

=   0yi  


 0j
j,i1.i0,ij,i f.....,,f,fA                               ………………………………(18) 

 
From which we define:  

 
f
i,0 

=y
i
(0)  

 

  xdf......,,f,fAf
x

0
n,i1,i0,in,i1n,i   n = 0, 1, 2, ….   ……………………………..(19) 

 
Numerical example 
 
Consider the following differential equation system 
 

�
1 −� ��

0 1 −�
0 0 0

� �� +�
1 −(� + 1) �� + 2�
0 −1 � − 1
0 0 1

� � = �
0
0

sin	(�)
� 

 
With initial condition   y1(0)=1, y2(0)=1 and  y3(0)= 0 
 

The exact solution is ��(�) = ��� + ���,  ��(�) = �� + ����(�) and ��(�) = sin	(�) 
 
Solution  curves using Neural networks. The solution of  DAE and the error between the solution by Genetic Algorithm,  neural 
network , Adomian decomposition method and Pade approximation [3] are displayed in Figures 2,3 and 4. The numerical values 
of the required solution are listed in the Tables 1,2 and 3. 
 

y (x) − y1*(x) Adomian y2 (x) − y*
2(x) Pade y1* (x) u (x) −u*(x) ANN u* (x) Exact y1 (x) x 

0.11 x 10-7 1.015354521 0.00181906 1.01353545 0.000000000 1.015354510 1.015354510 0.1 
0.105 x 10-6 1.063011200 5E-09 1.0630113 0.000000000 1.063011305 1.063011305 0.2 
0.11 x 10-5 1.145774763 6.3E-08 1.1457758 0.000000000 1.145775863 1.145775863 0.3 
0.63 x 10-5 1.267043625 2.5E-08 1.2670499 0.000000000 1.267049925 1.267049925 0.4 

0.24951 x 10-4 1.430866344 9.5E-08 1.4308912 0.000000000 1.430891295 1.430891295 0.5 
0.77718 x 10-4 1.642005198 1.16E-07 1.6420828 0.000000000 1.642082916 1.642082916 0.6 
0.205232 x 10-3 1.906006967 2.99E-07 1.9062119 0.000000000 1.906212199 1.906212199 0.7 
0.480596 x 10-3 2.229281110 1.107E-06 2.2297606 0.000000000 2.229761707 2.229761707 0.8 

0.1027034 x 10-2 2.619185426 3.46E-06 2.6202090 0.000000000 2.620212460 2.620212460 0.9 
0.2042608 x 10-2 3.084118661 9.77E-06 3.0861515 0.000000000 3.086161269 3.086161270 1.0 

                            y1*(x) is approximation solution of y
1
(x). 

 
y (x) − y1*(x) Adomian Approx. y2 (x) − y*

2(x)  u (x) −u*(x) ANN u* (x) Exact y2 (x) x 

0.2x10−8 1.115154258 0.2x10−8 1.115154260 0.000000000 1.115154260 1.115154260 0.1 
0.92x10−7 1.261136532 0.92x10−7 1.261136628 0.000000000 1.261136624 1.261136624 0.2 

0.1061x10−5 1.438513809 0.1061x10−5 1.438515059 0.000000000 1.438514869 1.438514870 0.3 
0.6065x10−5 1.647585970 0.6065x10−5 1.647594033 0.000000000 1.647592035 1.647592035 0.4 
0.23551x10−4 1.888410489 0.23551x10−4 1.888446092 0.000000000 1.888434040 1.888434040 0.5 
0.71650x10−4 2.160832634 0.71650x10−4 2.160957091 0.000000000 2.160904284 2.160904284 0.6 

0.184228x10−3 2.464520860 0.184228x10−3 2.464891938 0.000000000 2.464705089 2.464705088 0.7 
0.418878x10−3 2.799006923 0.418878x10−3 2.799991522 0.000000000 2.799425801 2.799425801 0.8 
0.867168x10−3 3.163730162 0.867168x10−3 3.166116460 0.000000000 3.164597330 3.164597330 0.9 

0.1667496x10−2 3.558085317 0.1667496x10−2 3.563459231 0.000000000 3.559752813 3.559752813 1.0 

                 y2*(x) is approximation solution of y
2
(x) 
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Y1(x)-y1*(x) Adomian y1 (x) − y1*(x) Pade y1* (x) u (x) −u*(x) ANN u* (x) Exact y1 (x) X 

0.2x10−8 0.099833416 -1E-09 0.099833416 0 0.099833417 0.099833417 0.1 
0.92x10−7 0.198669331 1.1E-09 0.1986693321 0 0.198669331 0.198669331 0.2 

0.1061x10−5 0.295520205 -2.8E-08 0.295520179 0 0.295520207 0.295520207 0.3 
0.6065x10−5 0.389418393 3.79E-07 0.389418721 0 0.389418342 0.389418342 0.4 
0.23551x10−4 0.479425529 4.33E-06 0.479429870 1E-09 0.479425538 0.479425539 0.5 
0.71650x10−4 0.564642453 2.51E-05 0.564667618 -1E-09 0.564642474 0.564642473 0.6 

0.184228x10−3 0.644217657 0.000105 0.644323167 0 0.644217687 0.644217687 0.7 
0.418878x10−3 0.717356001 0.000359 0.717714654 0 0.717356091 0.717356091 0.8 
0.867168x10−3 0.783325091 0.001047 0.784373775 0 0.783326910 0.783326910 0.9 

0.1667496x10−2 0.841470098 0.00272 0.844190631 0 0.841470985 0.841470985 1.0 

                     Y3*(x) is approximation solution of y
3
(x) 
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Solution of Differential-Algebraic Equations by using Genetic Algorithm 
   

X App y1by using Genetic Exact solution Error  1.0e-07 

0 1.0000 1.0000 -0.1000 
0.0250 1.0009 1.0009 -0.1000 
0.0500 1.0038 1.0038 -0.1000 
0.0750 1.0086 1.0086 -0.1000 
0.1000 1.0154 1.0154 -0.1000 
0.1250 1.0241 1.0241 -0.1000 
0.1500 1.0350 1.0350 -0.1000 
0.1750 1.0479 1.0479 -0.1000 
0.2000 1.0630 1.0630 -0.1000 
0.2250 1.0803 1.0803 -0.1000 
0.2500 1.0998 1.0998 -0.1000 
0.2750 1.1216 1.1216 -0.1000 
0.3000 1.1458 1.1458 -0.1000 
0.3250 1.1723 1.1723 -0.1000 
0.3500 1.2014 1.2014 -0.1000 
0.3750 1.2329 1.2329 -0.1000 
0.4000 1.2670 1.2670 -0.1000 
0.4250 1.3038 1.3038 -0.1000 
0.4500 1.3434 1.3434 -0.1000 
0.4750 1.3857 1.3857 -0.1000 
0.5000 1.4309 1.4309 -0.1000 
0.5250 1.4790 1.4790 -0.1000 
0.5500 1.5302 1.5302 -0.1000 
0.5750 1.5846 1.5846 -0.1000 
0.6000 1.6421 1.6421 -0.1000 
0.6250 1.7029 1.7029 -0.1000 
0.6500 1.7671 1.7671 -0.1000 
0.6750 1.8349 1.8349 -0.1000 
0.7000 1.9062 1.9062 -0.1000 
0.7250 1.9813 1.9813 -0.1000 
0.7500 2.0601 2.0601 -0.1000 
0.7750 2.1429 2.1429 -0.1000 
0.8000 2.2298 2.2298 -0.1000 
0.8250 2.3208 2.3208 -0.1000 
0.8500 2.4161 2.4161 -0.1000 
0.8750 2.5159 2.5159 -0.1000 
0.9000 2.6202 2.6202 -0.1000 
0.9250 2.7293 2.7293 -0.1000 
0.9500 2.8432 2.8432 -0.1000 
0.9750 2.9621 2.9621 -0.1000 
1.0000 3.0862 3.0862 -0.1000 

                                                                      y1 (x) is approximation solution of y1 
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X App y2by using Genetic Exact Error  1.0e-07 

0 1.0000 1.0000 -0.1000 
0.0250 1.0259 1.0259 -0.1000 
0.0500 1.0538 1.0538 -0.1000 
0.0750 1.0835 1.0835 -0.1000 
0.1000 1.1152 1.1152 -0.1000 
0.1250 1.1487 1.1487 -0.1000 
0.1500 1.1842 1.1842 -0.1000 
0.1750 1.2217 1.2217 -0.1000 
0.2000 1.2611 1.2611 -0.1000 
0.2250 1.3025 1.3025 -0.1000 
0.2500 1.3459 1.3459 -0.1000 
0.2750 1.3912 1.3912 -0.1000 
0.3000 1.4385 1.4385 -0.1000 
0.3250 1.4878 1.4878 -0.1000 
0.3500 1.5391 1.5391 -0.1000 
0.3750 1.5923 1.5923 -0.1000 
0.4000 1.6476 1.6476 -0.1000 
0.4250 1.7048 1.7048 -0.1000 
0.4500 1.7640 1.7640 -0.1000 
0.4750 1.8252 1.8252 -0.1000 
0.5000 1.8884 1.8884 -0.1000 
0.5250 1.9536 1.9536 -0.1000 
0.5500 2.0207 2.0207 -0.1000 
0.5750 2.0898 2.0898 -0.1000 
0.6000 2.1609 2.1609 -0.1000 
0.6250 2.2339 2.2339 -0.1000 
0.6500 2.3089 2.3089 -0.1000 
0.6750 2.3858 2.3858 -0.1000 
0.7000 2.4647 2.4647 -0.1000 
0.7250 2.5455 2.5455 -0.1000 
0.7500 2.6282 2.6282 -0.1000 
0.7750 2.7129 2.7129 -0.1000 
0.8000 2.7994 2.7994 -0.1000 
0.8250 2.8879 2.8879 -0.1000 
0.8500 2.9782 2.9782 -0.1000 
0.8750 3.0705 3.0705 -0.1000 
0.9000 3.1646 3.1646 -0.1000 
0.9250 3.2606 3.2606 -0.1000 
0.9500 3.3585 3.3585 -0.1000 
0.9750 3.4582 3.4582 -0.1000 
1.0000 3.5598 3.5598 -0.1000 

                                                                             y2 (x) is approximation solution of y2(x) 

 

 
 
Conclusion 
 
The solution of DAES can be obtained by Genetic Algorithms, neural network approach. The numerical results of DAES indicate 
that the neural networks solutions are must more efficient, compared with the solutions of Adomian decomposition method and 
pade approximation method. A neural computing approach discussed in this paper can yield the best solution of DAE than pade 
approximation method derived by the authors Celik and Bayram(3). A numerical example is given to illustrate the derived results. 
The efficient approximations of the DAES are done in MATLAB on PC, CPU 1.7 GHz. 
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