

RESEARCH ARTICLE

A COMPARATIVE STUDY TO SOLVE THE DIFFERENTIAL ALGEBRAIC EQUATION SYSTEMS BY
USING GENETIC ALGORITHM AND NEURAL NETWORKS

*1Wahed, M.E., 2Abdelslam, Z.A. and Eldaken, O.M.

1Department of Computer Sciences, Faculty of computers and information, Suez Canal University, Suez Canal,
Egypt

2,3Department of Mathematics, Faculty of Science, Suez Canal, University, Suez Canal, Egypt

 ARTICLE INFO ABSTRACT

In this paper, the solution system of differential algebraic equations (DAES). A novel hybrid method
for the solution of ordinary and partial differential equations is presented here. The method creates trial
solutions in Genetic Algorithms, neural network form using a scheme based on grammatical evolution.
The trial solutions are enhanced periodically using a local optimization procedure. The proposed
method is tested on a series of ordinary differential equations, systems of ordinary differential equations
as well as on partial differential equations with boundary conditions and the results are reported. The
goal is to obtain accurate solution with reduced calculus effort by comparing the solution of the DAES
obtained from Genetic algorithms, A domian decomposition method and neural network approach , A
domain decomposition method and pade approximation to this problem is very close to the exact
solution. An illustrative numerical method is presented for the proposed method.

Copyright © 2015 Wahed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

A series of problems in many scientific field scan be modelled with the use of differential equations such as problems in physics
(Byrne and Ponzi, 1988; Ercan Celik and Mustafa Bayram, 2004; Chuili Sun and Juergen Hahn, 2005; Deuflhard et al., 1987;
Hairer and Wanner, 1991), chemistry (Lagaris et al., 1998; Narendra and Parathasarathy, 1990; El-sayed Wahed, 2008), biology
(Ercan Çelik et al., 2006; Susmita Mall and Chakraverty, 2013), economics (Ioannis G.Tsoulos et al., 2009), etc. Due to the
importance of differential equations many methods have been proposed in the relevant literature for their solution such as Runge
Kutta methods (Ioannis G.Tsoulos et al., 2009; Melike Karta and Ercan C. elik, 2012) Predictor–Corrector (El-sayed Wahed,
2008; Susmita Mall and Chakraverty, 2013), radial basis functions (Narendra and Parathasarathy, 1990; Chakraverty, 2013),
artificial neural networks (Hairer and Wanner, 1991; Narendra and Parathasarathy, 1990), models based on genetic programming
(Ioannis G.Tsoulos et al., 2009; Melike Karta and Ercan C. elik, 2012), etc. In this article a hybrid method utilizing constructed
feed-forward neural networks by grammatical evolution and a local optimization procedure is used in order to solve ordinary
differential equations (ODEs),systems of ordinary differential equations(SODEs) and partial differential equations(PDEs). The
constructed neural networks with gram- matical evolution have been recently introduced by Tsoulos et al. [30] and it utilizes the
well-established grammatical evolution technique (Melike Karta and Ercan C. elik, 2012) to evolve the neural network topology
along with the network parameters. The method has been tested with success on a series of data-fitting and classifications
problems. In this article the constructed neural network methodology is applied on a series of differential equations while
preserving the initial or boundary conditions using penalization. The proposed method does not require the user to enter any
information regarding the topology of the network. Also, the new method can be used to solve either ODEs or PDEs and it can be
easily parallelized. This idea is similar to the cascade correlation neural networks introduced by Fahlman and Lebiere [13] in
which the user is not required to enter any topology in formation. However, the method for selecting the network topology differ
since the proposed algorithms a stochastic one. In the proposed method, the advantage of using an evolutionary algorithms that the
penalty function (use df or initial or boundary conditions) can be incorporated easily into the training process. Neural Networks
have been employed before to solve DAES (Byrne and Ponzi, 1988) as well as eigen value problems (Ercan Celik and Mustafa
Bayram, 2004).

*Corresponsing author: Wahed, M.E.,
Department of Computer Sciences, Faculty of computers and information, Suez Canal University, Suez Canal, Egypt.

ISSN: 0976-3376

Asian Journal of Science and Technology
Vol.06, Issue, 09, pp. 1777-1787, September, 2015

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF
SCIENCE AND TECHNOLOGY

Article History:

Received 22nd June, 2015
Received in revised form
07th July, 2015
Accepted 19th August, 2015
Published online 30th September, 2015

Key words:

Differential equations,
Genetic algorithms,
Grammatical evolution,
A domain decomposition,
Neural Networks.

The cases treated in the above mentioned articles were for simple finite or extended to infinity orthogonal box boundaries.
However when one deals with realistic problems, as for instance in modeling the human head-neck system (Chuili Sun and
Juergen Hahn, 2005) or the flow and mass transfer in chemical vapor deposition reactors (Deuflhard et al., 1987), the DAES
cannot be described in terms of simple geometrical shapes, that in turn would have allowed for a simple modeling scheme. In this
article we propose a method capable of dealing with such kind of arbitrarily shaped boundaries. As before (Byrne and Ponzi,
1988; Celik and Mustafa Bayram, 2004), our approach is based on the use of feed forward artificial neural networks (ANNs)
whose approximation capabilities have been widely acknowledged (Narendra and Parathasarathy, 1990; El-sayed Wahed, 2008).
More specifically, the proposed approach is based on the synergy of two feed forward ANNs of different types: a multilayer
perception (MLP) as the basic approximation element and a radial basis function (RBF) network for satisfying the BCs, at the
selected boundary points. In addition, our approach relies on the availability of efficient software for multidimensional
minimization (Hairer and Wanner, 1991) that is used for adjusting the parameters of the networks.

A solution to differential equation problems based on ANNs exhibits several desirable features:

• Differentiable closed analytic form.
• Superior interpolation properties.
• Small number of parameters.
• Implementable on existing specialized hardware (neuron processors).
• Also efficiently implementable on parallel computers.

In the next section we describe the proposed method for neural network, while in Section 2, described solving system of
differential equations by using genetic algorithms. Section 3, we discuss implementation procedures of the Pade series method. In
section 4 we illustrate Adomian decomposition method. Finally section 5 contains numerical example and we compare our results
to analytically known ones and given a conclusion.

Genetic Algorithms

A differential algebraic equation has the form

 Ψ (y, y', x) = 0, ………………….. (1)

With initial conditions (IC)

 Ψ* (x0) = y0, 








dx

d
 Ψ*(x0) = y1,

Where Ψ and Ψ* are both vector functions for which we assumed sufficient differentiability and the initial values to be consistent,
i.e.

Ψ (y0, y0

1, x0) = 0 ……………..(2)

The above DAE can be converted into a system of ODE as

dx

dψ*
i

 = fi (x, yi) (i = 1, 2, ………, n) ………………(3)

With initial condition

Ψi (0) = Ai

Thus the solution of the system of ODE is equivalent to the solution of DAE system.

Method Description

In this section a brief description of the grammatical evolution algorithm is given. The main step sof the proposed algorithm are
outlined with the steps for the fitness evaluation for the case sof ODEs.

Grammatical Evolution

Grammatical evolution is an evolutionary technique that can produce code in any programming language requiring the grammar
of the target language in BNF syntax and some proper fitness function. This technique has been used with success in many

1778 Asian Journal of Science and Technology Vol. 6, Issue 09, pp. 1777-1787, September, 2015

scientific fields such as symbolic regression [13], by replacing non terminal symbols with the right hand of the selected production
rule. The selection is performed in two steps:

- We read an element from the chromosome (with value V).
- We select the rule according to the scheme

Rule = V mod NR

Where NR is the number of rules for the specific non-terminal symbol. The process of replacing non terminal symbols with the
right hand of production rules is continued until either a full program has been generated or the end of chromosome has been
reached. In the latter case we can reject the entire chromosome or we can start over (wrapping event) from the first element of the
chromosome. If the limit of the wrapping events is reached the chromosome is rejected by assigning to it a large fitness value,
which prevents the chromosome to be used in the crossover procedure. In the proposed algorithm the limit of wrapping events
wassetto2.As an example of the mapping procedure of the grammatical evolution consider the BNF grammar shown in Fig. 1. The
number in parentheses denotes the sequence number of the corresponding production rule to be used in the mapping procedure.
Consider the chromosome x=[9,8,7,6,16,10,17,23,8,14]. The step soft he mapping procedure are listed in Table1. The final
outcome of these steps is the expression 3+sin(x).

Algorithm decription

The proposed method is baased on an evolutionary algorithm ,a stochastic process whose basis lies in the biological evolution
The grammar of the proposed method

S: : = <expr˃ (0)

<expr˃: : = (<expr˃ <op˃ <expr˃) (0)

│<func> (<expr˃) (1)

│ <terminal˃ (2)

<op> : := + (0)

│ - (1)
│ * (2)
│ / (3)
<func> : := sin (0)
│ cos (1)
│ exp (2)
│ log (3)
<digit ˃: := 0 (0)
│ 1 (1)
│ 2 (2)
│ 3 (3)
│ 4 (4)
│ 5 (5)
│ 6 (6)
│ 7 (7)
│ 8 (8)
│ 9 (9)
<terminal> : :=<xlist> (0)
 │<digitlist>.<digitlist> (1)
<xlist>: :=x1 (0)
│ x2 (1)
│x3 (2)
<digitlist>: :=<digit> (0)
│<digit>.<digitlist> (1)

1779 Asian Journal of Science and Technology Vol. 6, Issue 09, pp. 1777-1787, September, 2015

Table 1. An example of the mapping procedure

String chromosome operation

<expr ˃ 9, 8, 7,6,16,10,17,23,8,14 9 mod 7 = 2
<func˃(<expr˃) 8,7,6,16,10,17,23,8,14 8 mod 4 = 0
sin(<expr ˃) 7,6,16,10,17,23,8,14 7mod 7 = 0
sin(<expr˃ <op˃ <expr˃) 6, 16,10,17,23,8,14 6 mod 7 = 6
sin(x <op˃ <expr˃) 16,10,17,23,8,14 16 mod 4 = 0
sin(x) + <expr˃ 10, 17,23,8,14 10 mod 7 = 3
sin(x) + < digit˃ 17, 23,8,14 17 mod 10=7
sin(x) + 3 23,8,14

Algorithm along with a penalty function which is used in order to represent the boundary or initial conditions of the ordinary
differential equations, the main steps of the algorithm are as follows:

Algorithm

Input : function �(�), lower , upper bound [l b], Number of variable �,�
Repeat
 Solve the differential equation by [t,sol]=ode45(f,[l b],N)

 [x , f]= Genetic_algorithm(���, �, [�	�])

��� = � − ����

Until ��� < �
Plot the result with exact

Solution of DAES by using neural network

In this approach new feed forward neural network is used to transfer the transfer the trial solution of equation (3) to the neural
network solution of (3). The trail solution is expressed as the difference of two terms as below(8).

 (Ψi)a (x) = Ai + xNi (xj, hij), (i, j = 1, 2, ……….., n) ………………………..(4)

 The first term satisfies the IC and contains no adjustable parameters. The second term employs a feed forward neural
network and parameters hij correspond to the weights of the neural architecture. Consider a multilayer perception with n input
units, one hidden layer with n sigmoidal units and a linear output unit. The extension to the case of more than one hidden layer can
be obtained accordingly. For a given input vector, the output of the network is

     



n

1j
ijijii

n

1i
1ij uxhZ where Zσ VN

Wij denotes the weight from the input unit j to the hidden unit i , Vi denotes the weight from the hidden unit i to the output, ui
denotes bias of the hidden unit i and (z) is the sigmoidal transfer function.

The error quantity to be minimized is given by

 












n

1i

2

iai
ia

r)(xψx,f
dx

)(xdψ
E ……………………… (5)

The neural network is trained till the error function (5) becomes zero. Whenever Er becomes zero, the trail solution (4) becomes
the neural network solution of the equation (3).

Structure of the FFNN

The architecture consists of n input units, one hidden layer with n sigmoidal units and a linear output. Each neuron produces its
output by computing the inner product of its input and its appropriate weight vector. During the training, the weights and biases of
the network are iteratively adjusted by Nguyen and Widrow rule. The neural network architecture is given in the Fig. 1 for
computing Nij. The neural network algorithm was implemented in MATLAB on a PC, CPU 1.7 GHz for the neuro computing
approach to solve DAES.

1780 Asian Journal of Science and Technology Vol. 6, Issue 09, pp. 1777-1787, September, 2015

Figure 1. Neural network architecture

Neural network Algorithm

Step 1: Feed the input vector xj.

Step 2: Initialize randomized weight matrix wij and bias ui.

Step 3: Compute 



n

j
ijiji uxhZ

1

Step 4: Pass Zi into n sigmoidal functions

Step 5: Initialize the weight vector Vi from the hidden unit to output unit.

Step 6: Calculate   


n

1i
iiij ZVN

Step 7: Compute purelin function (Nij)

Step 8: Repeat the neural network training till he following error function

 












n

1i

2

iai
ia

r)(xψx,f
dx

)(xdψ
E

Description of the Pade Series Method

A system of initial value differential algebraic equations (DAEs) can be written in (1)

 The solutions of (1) can be assumed that

y = y0 + ex, …………………………….(6)

where e is a vector function which is the same size as y0.

Power series of solution for DAEs

We define another type of Power series in the form

f(x) = f0 + f1x + f2x

2 +…+ (fn + p1e1 + …+ pmem)xn ….……………………… (7)

1781 Asian Journal of Science and Technology Vol. 6, Issue 09, pp. 1777-1787, September, 2015

where p1, p2, . . . ,pm are constants. e1, e2, . . . , em are bases of vector e, m is the size of vector e. y is a vector with m elements in
(6). Every element can be represented by the Power series in (7).

yi = yi,0 + yi,1x + yi,2x

2 + …+ eix
n . ……………………………..(8)

where yi is the ith element of y. Substituting (8) into (1), we can get the following:

fi = (fi,n + pi,1e1 + …+ pi,mem)xn-j + Q(xn-j+1), ……………………………..(9)

where fi is the ith element of f (y, y', x) in (1) and j is 0 if f(y, y', x) have y', 1 if do not. From (9) , we can determine the linear
equation in (6) as follows:

Ai,j = pi,j, Bi = -fi,n. ……………………………(10)

Solving this linear equation, we have ei, i = 1,…,m. Substituting ei into (2.2), we have yi, i = 1,…,m. which are polynomials of
degree n. Repeating this procedure from (7) –(9), we can get the arbitrary order Power series of the solution for DAEs in (1).
Let stepsize of x be h and substituting it into the Power series of y and y', we have y and y' at x = x0 + h. If we repeat the above
procedure, we have numerical solution of DAEs in (1) (Byrne and Ponzi, 1988; Ercan Celik and Mustafa Bayram, 2004; El-sayed
Wahed, 2008).

Pade series

The Power series can be transformed into Pade' series easily. Pade' series is defined in the following:

a0 + a1x + a2x
2 +…=

L
L10

M
M10

xq...xqq1

xp...xpp




 …………………………… (11)

Multiply both sides of (11) by the denominator of right-hand side in (11) and compare the coefficients of both sides in (11). We
have




 
M

1k
lkkll pqaa , l=1,…,M, ………………………………(12)




 
L

1k
lkkll pqaa , l=M+1,…,M+L, ……………………………….(13)

Using Adomian Decomposition Method

A system of differential equations can be considered as (1) We can present the system (1), by using the i
th

 equation as:

Lyi =fi (x, y1, ….., yn) i = 1, 2, …., n …………………………………..(14)

where L is the linear operator d/dx with the inverse L
−1

= ∫
0

x

(.)dx. Applying the inverse operator on (14) we get the following

canonical form, which is suitable for applying Adomian decomposition method.

    dxy,.....,y,xf0yy
x

0
n1iii  . i = 1, 2, …., n ……………………………...(15)

As usual in Adomian decomposition method the solution of Eq.(15) is considered to be as the sum of a series:







0j

j,ii fy ……………………………(16)

And the integrand in the Eq.(16), as the sum of the following series:

1782 Asian Journal of Science and Technology Vol. 6, Issue 09, pp. 1777-1787, September, 2015

fi(xi, y1, …, yn) =  


 0j
j,i1,ii,0j,i f,...,f,fA ……………………………..(17)

Where Ai,j (fi,0, fi,1, …, fi,n) are called Adomian polynomials [6]. Substituting (16) and (17) into (15). We get

     









0j

x

0
0j

j,i1.i0,ij,iij,i f.....,,f,fA0yf

=   0yi  


 0j
j,i1.i0,ij,i f.....,,f,fA ………………………………(18)

From which we define:

f
i,0

=y
i
(0)

  xdf......,,f,fAf
x

0
n,i1,i0,in,i1n,i  n = 0, 1, 2, …. ……………………………..(19)

Numerical example

Consider the following differential equation system

�
1 −� ��

0 1 −�
0 0 0

� �� +�
1 −(� + 1) �� + 2�
0 −1 � − 1
0 0 1

� � = �
0
0

sin	(�)
�

With initial condition y1(0)=1, y2(0)=1 and y3(0)= 0

The exact solution is ��(�) = ��� + ���, ��(�) = �� + ����(�) and ��(�) = sin	(�)

Solution curves using Neural networks. The solution of DAE and the error between the solution by Genetic Algorithm, neural
network , Adomian decomposition method and Pade approximation [3] are displayed in Figures 2,3 and 4. The numerical values
of the required solution are listed in the Tables 1,2 and 3.

y (x) − y1*(x) Adomian y2 (x) − y*
2(x) Pade y1* (x) u (x) −u*(x) ANN u* (x) Exact y1 (x) x

0.11 x 10-7 1.015354521 0.00181906 1.01353545 0.000000000 1.015354510 1.015354510 0.1
0.105 x 10-6 1.063011200 5E-09 1.0630113 0.000000000 1.063011305 1.063011305 0.2
0.11 x 10-5 1.145774763 6.3E-08 1.1457758 0.000000000 1.145775863 1.145775863 0.3
0.63 x 10-5 1.267043625 2.5E-08 1.2670499 0.000000000 1.267049925 1.267049925 0.4

0.24951 x 10-4 1.430866344 9.5E-08 1.4308912 0.000000000 1.430891295 1.430891295 0.5
0.77718 x 10-4 1.642005198 1.16E-07 1.6420828 0.000000000 1.642082916 1.642082916 0.6
0.205232 x 10-3 1.906006967 2.99E-07 1.9062119 0.000000000 1.906212199 1.906212199 0.7
0.480596 x 10-3 2.229281110 1.107E-06 2.2297606 0.000000000 2.229761707 2.229761707 0.8

0.1027034 x 10-2 2.619185426 3.46E-06 2.6202090 0.000000000 2.620212460 2.620212460 0.9
0.2042608 x 10-2 3.084118661 9.77E-06 3.0861515 0.000000000 3.086161269 3.086161270 1.0

 y1*(x) is approximation solution of y
1
(x).

y (x) − y1*(x) Adomian Approx. y2 (x) − y*

2(x) u (x) −u*(x) ANN u* (x) Exact y2 (x) x

0.2x10−8 1.115154258 0.2x10−8 1.115154260 0.000000000 1.115154260 1.115154260 0.1
0.92x10−7 1.261136532 0.92x10−7 1.261136628 0.000000000 1.261136624 1.261136624 0.2

0.1061x10−5 1.438513809 0.1061x10−5 1.438515059 0.000000000 1.438514869 1.438514870 0.3
0.6065x10−5 1.647585970 0.6065x10−5 1.647594033 0.000000000 1.647592035 1.647592035 0.4
0.23551x10−4 1.888410489 0.23551x10−4 1.888446092 0.000000000 1.888434040 1.888434040 0.5
0.71650x10−4 2.160832634 0.71650x10−4 2.160957091 0.000000000 2.160904284 2.160904284 0.6

0.184228x10−3 2.464520860 0.184228x10−3 2.464891938 0.000000000 2.464705089 2.464705088 0.7
0.418878x10−3 2.799006923 0.418878x10−3 2.799991522 0.000000000 2.799425801 2.799425801 0.8
0.867168x10−3 3.163730162 0.867168x10−3 3.166116460 0.000000000 3.164597330 3.164597330 0.9

0.1667496x10−2 3.558085317 0.1667496x10−2 3.563459231 0.000000000 3.559752813 3.559752813 1.0

 y2*(x) is approximation solution of y
2
(x)

1783 Asian Journal of Science and Technology Vol. 6, Issue 09, pp. 1777-1787, September, 2015

Y1(x)-y1*(x) Adomian y1 (x) − y1*(x) Pade y1* (x) u (x) −u*(x) ANN u* (x) Exact y1 (x) X

0.2x10−8 0.099833416 -1E-09 0.099833416 0 0.099833417 0.099833417 0.1
0.92x10−7 0.198669331 1.1E-09 0.1986693321 0 0.198669331 0.198669331 0.2

0.1061x10−5 0.295520205 -2.8E-08 0.295520179 0 0.295520207 0.295520207 0.3
0.6065x10−5 0.389418393 3.79E-07 0.389418721 0 0.389418342 0.389418342 0.4
0.23551x10−4 0.479425529 4.33E-06 0.479429870 1E-09 0.479425538 0.479425539 0.5
0.71650x10−4 0.564642453 2.51E-05 0.564667618 -1E-09 0.564642474 0.564642473 0.6

0.184228x10−3 0.644217657 0.000105 0.644323167 0 0.644217687 0.644217687 0.7
0.418878x10−3 0.717356001 0.000359 0.717714654 0 0.717356091 0.717356091 0.8
0.867168x10−3 0.783325091 0.001047 0.784373775 0 0.783326910 0.783326910 0.9

0.1667496x10−2 0.841470098 0.00272 0.844190631 0 0.841470985 0.841470985 1.0

 Y3*(x) is approximation solution of y
3
(x)

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11

x

Exact y1 (x)

ANN u* (x)

Pade y1* (x)

Adomian

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11

x

Exact y2 (x)

ANN u* (x)

Pade y1* (x)

Adomian

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

X

Exact y1 (x)

ANN u* (x)

Pade y1* (x)

Adomian

1784 Asian Journal of Science and Technology Vol. 6, Issue 09, pp. 1777-1787, September, 2015

Solution of Differential-Algebraic Equations by using Genetic Algorithm

X App y1by using Genetic Exact solution Error 1.0e-07

0 1.0000 1.0000 -0.1000
0.0250 1.0009 1.0009 -0.1000
0.0500 1.0038 1.0038 -0.1000
0.0750 1.0086 1.0086 -0.1000
0.1000 1.0154 1.0154 -0.1000
0.1250 1.0241 1.0241 -0.1000
0.1500 1.0350 1.0350 -0.1000
0.1750 1.0479 1.0479 -0.1000
0.2000 1.0630 1.0630 -0.1000
0.2250 1.0803 1.0803 -0.1000
0.2500 1.0998 1.0998 -0.1000
0.2750 1.1216 1.1216 -0.1000
0.3000 1.1458 1.1458 -0.1000
0.3250 1.1723 1.1723 -0.1000
0.3500 1.2014 1.2014 -0.1000
0.3750 1.2329 1.2329 -0.1000
0.4000 1.2670 1.2670 -0.1000
0.4250 1.3038 1.3038 -0.1000
0.4500 1.3434 1.3434 -0.1000
0.4750 1.3857 1.3857 -0.1000
0.5000 1.4309 1.4309 -0.1000
0.5250 1.4790 1.4790 -0.1000
0.5500 1.5302 1.5302 -0.1000
0.5750 1.5846 1.5846 -0.1000
0.6000 1.6421 1.6421 -0.1000
0.6250 1.7029 1.7029 -0.1000
0.6500 1.7671 1.7671 -0.1000
0.6750 1.8349 1.8349 -0.1000
0.7000 1.9062 1.9062 -0.1000
0.7250 1.9813 1.9813 -0.1000
0.7500 2.0601 2.0601 -0.1000
0.7750 2.1429 2.1429 -0.1000
0.8000 2.2298 2.2298 -0.1000
0.8250 2.3208 2.3208 -0.1000
0.8500 2.4161 2.4161 -0.1000
0.8750 2.5159 2.5159 -0.1000
0.9000 2.6202 2.6202 -0.1000
0.9250 2.7293 2.7293 -0.1000
0.9500 2.8432 2.8432 -0.1000
0.9750 2.9621 2.9621 -0.1000
1.0000 3.0862 3.0862 -0.1000

 y1 (x) is approximation solution of y1

1785 Asian Journal of Science and Technology Vol. 6, Issue 09, pp. 1777-1787, September, 2015

X App y2by using Genetic Exact Error 1.0e-07

0 1.0000 1.0000 -0.1000
0.0250 1.0259 1.0259 -0.1000
0.0500 1.0538 1.0538 -0.1000
0.0750 1.0835 1.0835 -0.1000
0.1000 1.1152 1.1152 -0.1000
0.1250 1.1487 1.1487 -0.1000
0.1500 1.1842 1.1842 -0.1000
0.1750 1.2217 1.2217 -0.1000
0.2000 1.2611 1.2611 -0.1000
0.2250 1.3025 1.3025 -0.1000
0.2500 1.3459 1.3459 -0.1000
0.2750 1.3912 1.3912 -0.1000
0.3000 1.4385 1.4385 -0.1000
0.3250 1.4878 1.4878 -0.1000
0.3500 1.5391 1.5391 -0.1000
0.3750 1.5923 1.5923 -0.1000
0.4000 1.6476 1.6476 -0.1000
0.4250 1.7048 1.7048 -0.1000
0.4500 1.7640 1.7640 -0.1000
0.4750 1.8252 1.8252 -0.1000
0.5000 1.8884 1.8884 -0.1000
0.5250 1.9536 1.9536 -0.1000
0.5500 2.0207 2.0207 -0.1000
0.5750 2.0898 2.0898 -0.1000
0.6000 2.1609 2.1609 -0.1000
0.6250 2.2339 2.2339 -0.1000
0.6500 2.3089 2.3089 -0.1000
0.6750 2.3858 2.3858 -0.1000
0.7000 2.4647 2.4647 -0.1000
0.7250 2.5455 2.5455 -0.1000
0.7500 2.6282 2.6282 -0.1000
0.7750 2.7129 2.7129 -0.1000
0.8000 2.7994 2.7994 -0.1000
0.8250 2.8879 2.8879 -0.1000
0.8500 2.9782 2.9782 -0.1000
0.8750 3.0705 3.0705 -0.1000
0.9000 3.1646 3.1646 -0.1000
0.9250 3.2606 3.2606 -0.1000
0.9500 3.3585 3.3585 -0.1000
0.9750 3.4582 3.4582 -0.1000
1.0000 3.5598 3.5598 -0.1000

 y2 (x) is approximation solution of y2(x)

Conclusion

The solution of DAES can be obtained by Genetic Algorithms, neural network approach. The numerical results of DAES indicate
that the neural networks solutions are must more efficient, compared with the solutions of Adomian decomposition method and
pade approximation method. A neural computing approach discussed in this paper can yield the best solution of DAE than pade
approximation method derived by the authors Celik and Bayram(3). A numerical example is given to illustrate the derived results.
The efficient approximations of the DAES are done in MATLAB on PC, CPU 1.7 GHz.

1786 Asian Journal of Science and Technology Vol. 6, Issue 09, pp. 1777-1787, September, 2015

REFERENCES

Byrne, G.D. and Ponzi, P.R. 1988. "Differential algebraic systems, their application and solution", Computers Chem, Engng.,

12(5), pp. 377- 382.
Chuili Sun and Juergen Hahn, 2005. "Reduction of stable differential algebraic equation systems via projections and system

identification", Journal of process control., 15, pp. 639- 650.
Deuflhard, P., Hairer, E. and zugek, J. 1987. "One step and extrapolation methods for differential algebraic systems", Numer.

Ath., 51, pp. 501- 516.
El-sayed Wahed, M. 2008. " Neural-Network Methods for Irregular Boundaries with Robin Boundary Conditions " Kuwait J. Sci.

Eng., 35 (2A), pp. 1-14.
Ercan Celik and Mustafa Bayram, 2004. "Numerical solution of differential algebraic equation systems and applications", Appl

Math. Comput., 154, pp. 405- 413.
Ercan Çelika*, Mustafa Bayramb and Turgut yeloglua " 2006. Solution of Differential-Algebraic Equations(DAEs) by Adomian

Decomposition Method" International Journal Pure & Applied Mathematical Sciences, Vol.3 No.1, pp. 93-100.
Hairer, E. and Wanner, G. 1991. "Solving ordinary differential equations II: Stiff and Differential Algebraic problems", Springer-

Verlag, New York, 1991.
Ioannis G. Tsoulos a,* , DimitrisGavrilisb, EuripidisGlavasa " 2009. Solving differential equations with constructed neural

networks " Neurocomputing 72, pp. 2385–2391.
Lagaris, I.E. Likas, A. and Fotiadis, D.I. 1998. "Artificial neural networks for solving ordinary and partial differential equations",

IEEE Trans. Neural Networks, 9, pp. 987- 1000.
Melike Karta1 and Ercan C. elik2 , 2012." On the Numerical Solution of Differential-Algebraic Equations with Hessenberg Index-

3" Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume, Article ID 147240, 12 pages
Narendra, K.S. and Parathasarathy, K. 1990. "Identification and control of dynamical system using neural networks", IEEE

Trans. Neural networks, 1, pp. 4-27.
Susmita Mall and Chakraverty, S. 2013. "Comparison of Artificial Neural Network Architecture in Solving Ordinary Differential

Equations " Hindawi Publishing Corporation Advances in Artificial Neural Systems, Volume, Article ID 181895, 12
pages,http://dx.doi.org/10.1155/2013/181895.

1787 Asian Journal of Science and Technology Vol. 6, Issue 09, pp. 1777-1787, September, 2015

