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 ARTICLE INFO    ABSTRACT 
 

 

This paper concerns with the study of obtaining an infinite sequence of linear polynomials   such that 
the product of any two or three consecutive polynomials plus or minus their sum and increased by a 
polynomial of degree two with integer coefficients is a square of polynomial. 
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INTRODUCTION 
 

A Set of positive integers ( maaaa ,......,, 321 ) is said to have the property D(n),  ,0 zn  if  naa ji   is a perfect square 

for all mji  1  and such a set is called a Diophantine –m-tuple with property D(n). Many mathematicians considered the 

problem of the existence of Diophantine quadruples with the property D(n) for any arbitrary integer n (Bashmakova, 1974) and 
also for any linear polynomial in n. Further, various authors considered the connections of the problems of diophantus, davenport 
and Fibonacci numbers in (Thamotherampillai, 1980; Brown, 1985; Gupta and Singh, 1985; Beardon and Deshpande, 2002; 
Deshpande, 2002; Deshpande, 2003; Bugeaud et al., 2007; Tao Liqun, 2007; Fujita, 2008; Srividhya, 2009; Gopalan and 
Pandichelvi, 2011; Yasutsugu Fujita and Alain Togbe, 2011; Gopalan, 2012; Gopalan, 2012; Gopalan, 2012; Flipin et al., 2012; 
Fujita, 2006; Filipin et al., 2012; Gopalan et al., 2014). 
 

In this communication, we find special sequence of polynomials ,....},,{ 210 aaaS   in which the product of any two or three 

consecutive polynomials plus or minus their sum and increased by a polynomial of degree two with integer coefficients is a square 
of polynomial. 
 

MATERIALS AND METHODS 
 

Construction of Special Polynomial Sequence I 
 

Let 120  aa  and 341  aa  be two linear polynomials such that 
22

1010 )33()22(  aaaaaaa , a 

perfect square 
 

Therefore ),( 10 aa  is the special dio-2-tuple with property )22( 2  aaD  

Let 2a  be a linear polynomial such that 

 
22

20 )34()1( paaaa        ……………. (1) 
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22
21 )56()1( qaaaa         ……………. (2) 

 

Eliminating 2a  between (1) and (2), we get 

 

))(12()1()1( 01
22

0
2

1 aaaaqapa      …………….. (3) 

 
Introduction of the linear transformations 
 

TaXp )1( 0          ……………… (4) 

 

TaXq )1( 1          ……………… (5) 

 
in (3) leads to the Pell equation 
 

)12()1)(1( 22
10

2  aaTaaX      ………………. (6) 

 

Whose initial solution is 33,1 00  aXT  

Thus (4) yields 55  ap  and using (1), we get 11122  aa  

Hence )1112,34,12(),,( 21  aaaaaao  is the required special dio-triple with property )22( 2  aaD  

The repetition of the above process leads to the generation of special dio-3-tuples, namely, 
 

),......,,(),,,( 32121 aaaaaao  

 

Note that the above results may be presented as a theorem as follows: 
 

Theorem 
 

Consider the infinite sequence ,....},,{ 210 aaaS   of polynomials given by     
 

)1(2 2
1  aaa nnn    where   

1,0

,....2,1,0,

12

12











 nnnn
 

 

This sequence is such that the product of any two or three consecutive polynomials added with their sum and increased by a 

polynomial of degree two with integer coefficients )22( 2  aa  is a square of polynomial. 
 

Replacing ‘a’ by a Gaussian integer and irrational number respectively in each of the above triples, it is noted that each resulting 
triple is a special Gaussian dio-3-tuple and irrational triple satisfying the required property. 
 

A few examples are given below: 
 

a  Dio-Triples Property 

),,( 21 aaao  ),,( 321 aaa  ),, 432 aaa  

51 i  

)}5223(

),547(

),523{(

i

i

i







 

}503059(

),5223(

),547{(

i

i

i







 

)}580159(

),53059(

),5223{(

i

i

i







 

)54( iD
 

i2+3  

i24)}+(47

i8),+(15

i4),+{(7

 

60)}(119

i24),+(47

i8),+{(15

i

 

160)}(319

60),(119

i24),+{(47

i

i



  

1613( iD 
 

 

Construction of Special Polynomial Sequence II 
 

Let 120  aa  and 351  aa  be two linear polynomials such that 
22

1010 )13()22()(  aaaaaaa , a 

perfect square 
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Therefore ),( 10 aa  is the special dio-2-tuple with property )22( 2  aaD  

Let 2a  be a linear polynomial such that 

 
22

20 1)1(  aaa        ………….. (7) 

 
22

21 13)1(  aaaa        ………….. (8) 

 

Eliminating 2a  between (7) and (8), we get 

 

))(12()1()1( 01
22

0
2

1 aaaaaa       …………. (9) 

 
Introduction of the linear transformations 
 

TaX )1( 0          ………… (10) 

 

TaX )1( 1          …………. (11) 

 
in (9) leads to the Pell equation 
 

)12()1)(1( 22
10

2  aaTaaX      ………… (12) 

 

Whose initial solution is 13,1 00  aXT  

 

Thus (10) yields 15  a  and using (7), we get 5132  aa  

 

Hence )513,35,12(),,( 21  aaaaaao  is the required special dio-triple with property )22( 2  aaD  

The repetition of the above process leads to the generation of special dio-3-tuples, namely, 
 

),....81233,3189,1334(),,(

),3189,1334,513(),,(

),1334,513,35(),,(

),513,35,12(),,(

543

432

321

21









aaaaaa

aaaaaa

aaaaaa

aaaaaao

 

 
Note that the above results may be presented as a theorem as follows: 
 
Theorem 
 

Consider the infinite sequence ,....},,{ 210 aaaS   of polynomials given by     
 

  
222

1 2)( nnnnn aaa     where   

0,1,1,1

,....2,1,0,

,

1212

12

12



















nnnn

nnn

 

 
This sequence is such that the product of any two or three consecutive polynomials added with their sum and increased by a 

polynomial of degree two with integer coefficients )22( 2  aa  is a square of polynomial 

 
Conclusion 
 
In this paper, we have presented a sequence of linear polynomials such that any set of 3 consecutive polynomials represents a 
special dio-triple with suitable property. To conclude, one may search for sequence of polynomials representing polygonal 
numbers and other special numbers leading to special dio-triples and quadruples with suitable property. 
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A few examples of special dio-triples are exhibited below  
 

a  Dio-Triples Property 

),,( 21 aaao  ),,( 321 aaa  ),, 432 aaa  

71 i  

)}71318(

),758(

),723{(

i

i
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


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}73447(
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i

i

i




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)}789120(

),73447(

),71318{(

i

i

i




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)10(D  

72 i  

)}71331(

),7513(

),725{(

i

i

i







 

}73481(

),71331(

),7513{(

i

i

i




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)}789209(

),73481(

),71331{(

i

i

i







 

)729( iD   

i4+1  

i52)}+(18

i20),+(8

i8),+{(3

 

136)}(47

i52),+(18

i20),+{(8

i

 

356)}(120

136),(47

i52),+{(18

i

i



  

)19(D  

i4+6  

i52)}+(83

i20),+(33

i8),+{(13

 

136)}(217

i52),+(83

i20),+{33

i

 

356)}(565

i136),+(217

i52),+{(83

i

 

)406( iD   
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