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 ARTICLE INFO    ABSTRACT 
 

 

The present paper deals with the analysis of the fluid–structure systems considering the coupled effect 
of elastic structure and fluid adjacent to it. Both fluid and structure are discretized and modeled by finite 
elements. In the governing equations, pressure for the fluid domain and displacement for the structure 
are considered as independent nodal variables. Two different methods namely, direct coupled and 
indirect iterative approach for the analysis of fluid-structure system has been carried out in this study. In 
direct coupled approach, the solution of the fluid-structure system are accomplished by considering 
these as a single system while in indirect iterative method, the responses are obtained by solving the 
two systems separately with enforcing the interaction effects at the interface. The results obtained from 
these two methods are compared in terms of CPU times to evaluate the effectiveness of these methods 
for varieties of fluid-structure interaction problems. The outcomes of the results show that the 
effectiveness of these methods mainly depends on the degree of flexibility of structure and the length of 
the reservoir adjacent to it.   
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INTRODUCTION 
 

The interaction between an elastic structure and compressible fluid adjacent to it due to dynamic loading has become the subject 
of intensive investigation in recent years. The interaction between the fluid and the structure has to be accounted foran accurate 
dynamic analysis of these types of structures. Chopra (Chopra, 1967) presented an analytical solution of the wave equation to 
obtain the hydrodynamic pressure on the vertical face of the structures during earthquake. Another analytical expression for 
calculating hydrodynamic pressure on structure with inclined upstream face was evaluated by Chwang (1978). However, such 
analytical methods are suitable for rigid structures. However, the structures are practically elastic in nature. Formulations based on 
displacement variables are usually chosen for the structure while the fluid is described by different variables such as displacement, 
pressure, velocity, velocity potential etc.  
 

The governing equations of fluid interms of displacements are carried out by many researchers (Olson and Bathe, 1983; Chen and 
Taylor, 1990; Bermudez et al., 1995; Maity and Bhattacharyya, 1997). In such formulation, the fluid elements can easily be 
coupled to the structural elements using standard finite element assembly procedures. But the degrees of freedom for fluid domain 
increase significantly especially for three dimensional problems. Moreover, the fluid displacements must satisfy their 
rotationalitycondition, otherwise zero-frequency spurious modes may occur (Bermudez et al., 1995). Fenves and Vargas (Fenves  
et al., 1978) considered velocity and pressure as nodal variables to represent the governing equations for fluid. However, as 
number of unknown parameters increase in the fluid domain, the requirement of computational time becomes higher. Zienkiewicz 
et al. (1983) represented the equations of fluid domain in terms of a displacement potential. The coupled equations of motion in 
this case become unsymmetrical, but irrotationality condition on fluid motion is automatically satisfied. Many researchers 
(Zienkiewicz  et al., 1978; Muller, 1981; Maity and Bhattacharyya, 2003) considered hydrodynamic pressure as unknown variable 
in finite element discretization of the fluid domain. Many simplified Eulerian approachesare available to deal fluid-structure 
interaction problem. Some of which, fluid-structure interaction is studied in a decoupled manner. In this type of analysis, the 
response of fluid is first calculated assuming the structure as rigid and calculated pressure is imposed on the structure to obtain the 
response of structure.  
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But such type of analysis does not always lead to a conservative design of structure particularly for the case of resonance between 
fluid and structures. Sami and Lotfi (Sami and Lotfi, 2007) studied dam-reservoir system by modal coupled approach and reported 
that the coupled modal approach yields good approximation even with a relatively low number of combinations of modes. But, 
main disadvantage of this method is the calculation of eigenvectors through solving unsymmetrical mass and stiffness matrix of 
dam-reservoir system. The authors also studied the dam-reservoir system in decoupled modal approach. The accuracy of 
decoupled modal approach increases much lower rate as the number of combined modes grows. 
 
Many researchers (Maity and Bhattacharyya, 2003; Akkose et al., 2008; Onate et al., 2006; Singh et al., 1991; Lotfi et al., 2004; 
Antoniadis and Kanarachos, 1988; Gogoi et al., 2005) used indirect iterative method to deal the fluid-structure interaction 
problems. In this method, the hydrodynamic pressure in fluid domain is first determined considering structure as rigid. The 
resulting pressure exerts forces on the adjacent structure. Due to this additional forces structure undergoes new displacement. The 
fluid domain is solved again with the calculated displacement to get the response of the elastic structures. The process is continued 
till a desired level of convergence in both pressures and displacements are achieved. The major advantage of this method is that 
the coupled field problems can betackled in a sequential manner. The analysis is carried out for each field separately and 
interaction effect is accommodated by updating the variables of the fields in the respective coupling terms. 
 
Another group of researchers used direct coupled approach (Zienkiewicz and Bettes, 1978; Sharan and Gladwell, 1985; Hall and 
Chopra, 1982). In this method, fluid and structure is coupled and solved as a single system. A number of researchers used 
hydrodynamic pressure as the unknown variable in finite element discretization of the fluid domain to overcome the development 
of spurious modes. But the resulting equations in this case lead to unsymmetrical matrices and require a special purpose computer 
program for the solution of coupled systems is required (Sandberg and Goransson, 1988; Sandberg, 1995).  From the past 
literature, it is observed that the coupled interaction between fluid and structure are incorporated either by coupling of two systems 
directly (known as strong coupling) or coupled interaction effects are ensured indirectly at the interface by an iterative method 
(known as weak coupling).  
 
It is observed that both the methods have certain advantages and disadvantages. However, no paper is available which compares 
these two methods and recommends the suitability of the method to solve a particular type of fluid-structure interaction problem. 
To investigate the efficacy of the above mentioned methods, i.e., direct coupling and indirect coupling, a comparative study has 
been performed for different cases. Computer codes have been developed both for direct coupled approach and indirect iterative 
approach in MATLAB environment. Both the structure and fluid domain are discretized in finite elements and displacement and 
pressure are considered as unknown variables to describe the structure and fluid respectively. By comparing different responses of 
the fluid-structure system and their execution time from direct and indirect coupling, the efficiency and relative advantages and 
disadvantages of these methods are investigated.  
 
Theoretical formulation 
 
Theoretical Formulation for Structure  
 
The equation of motion of a structure subjected to external forces can be written in standard finite element form as 
 

          dM u C u K u F   
          (1)

 
 

Where, M ,  C  and  K  are mass, damping and stiffness matrix of structure respectively,  u , u and  u are nodal accelerations, 

velocities and displacements,  dF  is the nodal forces. In present investigation the structure has been discretised by two 

dimensional eight node rectangular elements. The dam body is assumed to be in a state of plane strain. The structural Rayleigh 
damping can be expressed as 
 

      C a M b K              (2) 

 

where a  and bare called the proportional damping constants. The relationship between a , b  and the fraction of critical 
damping at a frequency  is given by the following equation.   
 

 1

2

b
a 



    
              

(3) 

 

Damping constants a  and bare determined by choosing the fraction of critical damping 1  and 2  at two different frequencies 

1 & 2 and solving simultaneously equations a  and b . Thus,  
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Usually, 1 is taken as the lowest natural frequency of the structure, and 2 is the highest frequency of interest in the loading or 

response. In the present study, the fraction of critical damping for both the frequencies are chosen as the same i.e. 1’ = 2’ =  . 
Thus, above equation may be expressed as  
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            (5)

 

 
Theoretical Formulation for Fluid 
 
Assuming fluid to be linearly compressible, inviscid and with small amplitude irrotational motion, the hydrodynamic pressure 
distribution due external excitation is given as 
 

 
2

2

1
( , , ) ( , , )p x y t p x y t

C
  

          (6) 
 

Where C is the acoustic wave velocity in the water and 2 is the Laplacian operator in two dimensions. The pressure distribution 
in the fluid domain is obtained by solving eq. (6) with the following boundary conditions. The geometry of fluid - structure system 
is shown in Fig. 1. 
 

 
 

 

Fig.1. Geometry of fluid-structure system 
 

i) At surfaceI 
 
Considering the effect of surface wave of the fluid, the boundary condition of the free surface is taken as 
 

1 p
p +  = 0

g y




              (7) 

 
ii) At surface II 
 
At fluid-structure interface, the pressure should satisfy  
 

i t
f

p
(0, y, t) = ae

n




             (8)
  

Where 
i tae 

 is the horizontal component of the ground acceleration in which, is the circular frequency of vibration and 

1i   ,n is the outwardly directed normal to the element surface along the interface. f is the mass density of the fluid. 
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iii) At surface III 
 
This surface is considered as rigid surface and the pressure should satisfy the following condition  
 

 ,0, 0.0
p

x t
n




              (9)

   

    
    

iv) At surface IV 

 

In case of finite fluid domain, this surface is considered to be rigid and thus the boundary condition in this case will become as 

follows: 

 , , 0.0
p

L y t
n




              (10) 

 

Where, L is the distance between structural surface and surface IV. In case of infinite fluid domain, the domain needs to be 

truncated as a suitable distance for the finite element analysis. The truncation boundary as proposed by Maity and Bhattacharyya 

(1999) has been implemented for the finite element analysis of infinite reservoir.  

 
Finite Element Formulation for Fluid domain 
 

By using Galerkinapproach and assuming pressure to be the nodal unknown variable, the discretised form of eq. (6) may be 

written as  

 

2

2

1
0rj ri i ri iN N p N p d

c


 
     
             (11) 

 
Where, Nrj is the interpolation function for the reservoir and Ω is the region under consideration. Using Green's theorem eq. (11) 
may be transformed to  
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N
NpdNN

c
     (12) 

 
in which i varies from 1 to total number of nodes and Γ represents the boundaries of the fluid domain. The last term of the above 
equation may be written as 
 

  



 



d
n

p
NB rj             (13)

 

The whole system of equation (12) may be written in a matrix form as 

 

     E P G P F       


           (14) 
Where, 

   2

1 T

r rE N N d
C



      
          (15) 

       
T T

r r r rG N N N N d
x x y y



    
           


       (16) 

           
T

r f fs fb t

p
F N d F F F F

n



     


 

       (17) 
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Here the subscript f, fs, fb and t stand for the free surface, fluid-structure interface, fluid-bed interface and truncation surface 
respectively. For surface wave, the eq. (7) may be written in finite element form as 
 

   
1

f fF R p
g
           (18) 

In which, 

         


dNNR r
T

f

rf           (19)
 

 
At the fluid-structure interface if {a} is the vector of nodal accelerations of generalized coordinates, {Ffs} may be expressed as 

 

   fs fsF R a                 (20)
 

 

In which, 

 

    
fs

T

fs r dR N T N d


      
          (21)

 

 

Where,(T) is the transformation matrix at fluid structure interface and Nd is the shape function of dam. At fluid-bed interface  

  0fdF 
   

          (22)

 

And at the truncation boundary: 
 
For finite fluid domain, 

  0tF 
             (23) 

 
For infinite fluid domain, 
 

       
1

t t tF R p R p
C

  
           (24) 

     
t

T

t r rR N N d


  
           (25)

 

 
Where, 
 

 is a coefficient as expressed by Maity and Bhattacharyya (23).After substitution all terms the eq. (14) becomes 

 

          rE P A P G P F   
         (26) 

Where, 

 
1

fE E R
g
                   (27)

  

   r fsF R a                  (28) 
For finite fluid domain, 

  0.0A 
             (29) 

 G G                 (30) 

And for infinite fluid domain, 
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   
1

tA R
C


             (31) 

        
(32) 

         
 

For any given acceleration at the fluid-structure interface, the eq. (26) is solved to obtain the hydrodynamic pressure within the 
fluid. 

 

 

Direct Coupling for Fluid-Structure System 
 

In the fluid-structure interaction problems, the structure and the fluid do not vibrate as separate systems under external excitations, 
rather they act together in a coupled way. Therefore, this fluid-structure interaction problem has to be dealt in a coupled way.  
In present study, a direct coupling approach is developed to get the coupled fluid-structure response under external excitation. The 
coupling of structure and fluid may be formulated in following way. 
 
The discrete structural equation with damping may be written as: 
  

0dMu Cu Ku Qp F          (33) 

 
The coupling term (Q) in eq. (33) arises due to the acceleration and pressure specified on the fluid-structure interface boundary 
(Zienkiewicz and Newton (Yang et al., 1996) and can be expressed as: 
 

s s

T T
s s rN npd N nN d p Qp

 
    
 

  
      (34) 

 
Where, n  is the direction vector of the normal to the fluid-structure interface. Ns and Nr are the shape functions of structure and 
fluid respectively. Similarly, discretized fluid equation may be written as:  
 

0T
rEp Ap Gp Q u F      

    
(35) 

 
Now, the system of eq. (33) and (35) are coupled in a second-order ordinary differential equations, which defines the coupled fluid 
-structure system completely. These sets of coupled equations are solved on two different meshes of fluid and structure. The eq. 
(33) and (35)may be written as a set: 
 

0 0

0 0

d

T
r

FM u C u K Q u

Q E p A p G p F

             
              

             

 

 
     (36) 

 
For free vibrations analysis, the above equation can be simplified to the following expression after omitting all the damping terms: 
 

 

0
0

0T

M u K Q u

Q E p G p

       
       

       




    (37) 

 
Natural frequency of fluid-structure system can be obtained by eigenvalue solution of eq. (37). However, the matrices in eq. (37) 
are unsymmetrical and standard eigenvalue solutions cannot be used directly. So the above matrices are to be transformed into 

symmetric matrices. This can be accomplished by change of variables as follows. Introducing two variables 
tiueu ~ and

tipep ~
,
eq.(37) can be expressed as  

 

0~~~ 2  uMpQuK      (38) 

 
2 2 0TEp Q u Gp          (39) 

 
Further, introducing another variable q such that 

   tG G R   

2035                  Asian Journal of Science and Technology Vol.06, Issue, 12, pp.2030-2042, December, 2015 
 



qp 2~      (40) 

 
After manipulation and substitution of above three equations in eq. (37), the final form of this equation becomes  
 

2

0 0 0

0 0 0 0 0

0 0 0 T T

K M Q u

A E p

Q E G q



      
           
           







    (41) 

 
The above matrices in fluid-structure system are symmetric and are in standard form. Further, the variable can be eliminated by 
static condensation and the final fluid-structure system becomes symmetric and still contains only the basic variables. 
 
Indirect Iterative Approach for Fluid-Structure System  
 
The coupled effect of fluid-structure system can also be achieved by an iterative scheme. At any time instant t, hydrodynamic 
pressure in fluid domain is evaluated by solving eq. (26) with appropriate boundary conditions and considering the structure to be 
rigid. But, the result is inaccurate because in practical, the structure is elastic in nature. To determine accurate hydrodynamic 
pressure, forces developed due to hydrodynamic pressures at rigid structure-fluid interface are considered as additional forces on 
the adjacent structure. Hence, at the same time instant, the structure is analyzed with these additional forces {Frr}, using eq. (42).  
 

d rrMu Cu Ku F F     
           (42) 

 

Here, the external force Fd can be expressed as follows. 
 

d gF Mu 
             (43)  

 

The ground acceleration is considered as gu .Due to these additional forces, the structure undergoes a displacement 
td , as a 

result boundary condition at the fluid- structure interface changes. Therefore, the fluid domain is solved again with the changed 

displacement at fluid-structure interface. Thus at time t, both the hydrodynamic pressure  
t

p and the structural displacement 

 
td  are iterated simultaneously till a desired level of convergence is achieved. Thus, 

 

   
 

   
 

',  and
i+1 ii+1 it t t t

ii tt

 - p p - d d
       

p d
   

          (44) 

Where,i is the no. of iteration.ε´ and ε̋ are small pre-assigned tolerance values. For an efficient and accurate analysis of fluid-

structure coupled system, the steps to be followed are given in the form of flow chart in Fig. 2. 
 

NUMERICAL RESULTS  
 
Validation of Developed Direct Coupling Method 
 
The accuracy of the proposed direct coupled approach is studied considering a bench marked problem. The results are compared 
with an existing literature (12) for the Pine flat dam. The material properties of dam and reservoir are considered as follows: 
modulus of elasticity=22.75GPa,Poisson’s ratio=0.2, unit weight of concrete=2480 kg/m3, pressure wave velocity = 1440 m/s, unit 
weight of water = 981kg/m3,height of dam (Hd) = 121.91 m, width at top (td) =  9.75 m, width at base  (Ld) = 95.71,depth of 
reservoir (Hf)= 116.19 m. Fig. 3 shows the geometric details and a typical finite element discretization for the dam-reservoir 
system. For the finite element analysis, the infinite reservoir is truncated at a distance (Lt) 200m from dam-reservoir interface and 
Somerfeld’s boundary condition is implemented at truncation surface as considered by Sami and Lotfi (12).  The first five natural 
frequencies of the dam-reservoir system are listed and compared with those values obtained by Samii and Lotfi (12) in Table 1. 
The tabulated results show the accuracy of the developed direct coupled approach. 
 

 
Validation of the Developed Indirect Iterative Method 
 
Validation of indirect iterative approach is carried out on a problem that is considered by Yang et al.(25) in their study. The 
geometry and material properties of fluid-structure system considered in the present case are same as considered by Yang et al 
(25) and are as follows. Structure: height (Hs) = 120m, width at top and base (ts) = 90m, mass density (ρd) = 23.6 kN/m3, Poisson’s 
ratio (ν)=0.2, modulus of elasticity (Ed) = 2.76 × 107 kN/m2, structural damping = 5%; Fluid: depth (Hf)= 120m, acoustic speed (c) 
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= 1439 m/sec, mass density (ρd) = 9.97 kN/m3. The infinite reservoir domain is truncated at a distance (L) = 60m and the 
truncation boundary condition as proposed by Maity and Bhattacharyya (23) is implemented at the truncation surface.  
 

 
 

 
Fig. 2. Flow chart for fluid-structure analyzer of indirect approach 

 
 

 
 

Fig. 3. Finite element mesh of dam-reservoir system 
 

Table 1. First five natural frequencies of the Pine flat dam-reservoir system 
 

Mode number Natural Frequency (Hz) 
 Present Study Samii and Lotfi  (Sami and Lotfi, 2007) 
1 2.5341 2.5267 
2 3.2712 3.2681 
3 4.5626 4.6651 
4 6.2326 6.2126 
5 7.9435 7.9181 
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Both the fluid and structure are modeled with eight node rectangular elements. A typical finite element discretization for the fluid-
structure system is shown in Fig.4.The horizontal displacement due to ramp acceleration at the top of the structure is plotted in 
Fig.5. The results obtained from present indirect iteration approach are superimposed with the results obtained by Yang et al. (25).  
The comparison of the results shows the accuracy of the indirect iterative approach.  
 

Comparison between Direct and Indirect Approach 
 
In order to investigate the efficiency of direct coupled and indirect iterative approach, few numerical examples related to fluid-
structure interaction problems are studied. For indirect iterative approach, the tolerance for both pressure in fluid domain and 
displacement in structure is considered as 10-5. The comparison between these two methods is made by comparing the maximum 
hydrodynamic pressure developed in the fluid-structure interface, maximum tip displacement of the structure and CPU time. All 
computer codes have been run in a PC of following configuration: Processor:- Intel(R) Core(TM) 2 Duo CPU  T5870 @ 2.00 
GHz, Installed memory (RAM):- 3.00 GHz, System type:- 32 bit operating system. 
 

 
 

Fig. 4. Finite element mesh of fluid-structure system 

 

 
 

Fig. 5. Horizontal displacement at top of the structure due to ramp acceleration 
 

Example 1 
 
To study the efficiency of direct coupled and indirect iterative approach a problem considering a cantilever log gate structure is 
studied. The geometric details and material properties are consider as follows: Gate structure: height (Hd) = 5 m, mass density (ρd) 
= 7800 kg/m3, Poisson’s ratio (ν) = 0.3, modulus of elasticity (Ed) = 200 GPa and structural damping = 5%; Water: depth (Hf) = 5 
m, acoustic speed (c) = 1440 m/sec, mass density (ρf) = 1000 kg/m3.The infinite reservoir is truncated at a distance 2.5 m from the 
fluid-structure interface and boundary condition developed by Maity and Bhattacharyya (23) is implemented at the truncation 
surface. For the finite element analysis, the gate structure is discretized by 4 × 12 (i.e., no. of element in horizontal direction, Nh = 
4 and no. of element in vertical direction, Nv = 12) and reservoir water is discretized by 12 ×12 (i.e., Nh = 12 and Nv = 12). 
 
The excitation on the structure is considered to be sinusoidal acceleration with amplitude equal to 1m/sec2 and frequency of 
5rad/sec. The no. of time step per cycle of the excitation is taken as 32 and the analysis is carried out up to three complete cycles. 
The analysis is conducted for different thickness of structure, starting from 125mm to 340 mm. The different cases are 
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summarized in a tabular form along with the results such as tip displacement of structure, maximum hydrodynamic pressure at the 
bottom of the fluid-structure interface and CPU time. The pressures at point A and tip displacement of the structure presented in 
Table 2 are corresponding to time 2.25T. From Table 2, it is observed that the displacements obtained from both the methods are 
almost similar and it decreases with the increase of thickness of the structure as is expected. Also, the hydrodynamic pressure 
increases with the increase of thickness of the structure for both the methods.  
 
However, the hydrodynamic pressure obtained from indirect coupling is slightly greater than the value obtained from direct 
coupling for all the cases. The CPU time for direct coupling with different thickness of structure are same as the number of 
degrees of freedom of the coupled system is taken same. However, a wide variation of CPU time for different thickness of 
structure in indirect iterative approach is noticed. The CPU time in indirect iterative approach for lower thickness has higher value 
and the computational time decreases with the increase of structural thickness. This observation implies that in indirect iterative 
approach, more no of iterations are required to converge the result for relatively flexible structure. From the tabular results, it may 
be concluded that the indirect coupling is efficient in terms of computational time when the structure is relatively rigid. However, 
for flexible structure, this method takes relatively much more computation time as compare to direct coupling approach. 
 

Table 2. Comparison of results between two different approaches 
 

Thickness of structure                
(mm) 

Horizontal displacement at tip of the 
structure                                      (mm) 

Maximum hydrodynamic pressure (N/m2) CPU time                                                                                            
(sec) 

 Direct coupling Indirect coupling Direct coupling Indirect coupling Direct coupling Indirect coupling 
125 7.6 7.7 3417 3433 44.6 156.6 
150 4.3 4.3 3429 3439 44.6 115.4 
200 2.1 2.1 3470 3476 44.6 58.9 
250 1.2 1.2 3498 3504. 44.6 46.7 
275 0.9 0.9 3556 3562 44.6 42.7 
300 0.7 0.7 3585 3591 44.6 41.1 
325 0.6 0.6 3681 3689 44.6 40.7 
350 0.4 0.4 3696 3711 44.6 40.3 
375 0.3 0.3 3727 3735 44.6 40.2 

 
 

Example 2 
 

Here, the behavior of a flexible separator wall in a water storage tank is considered as a fluid structure interaction problem. Fig. 6. 
shows the geometry of water tank and the separator wall within it. The walls of the water tank and at the bottom of the tank are 
assumed to be rigid. The detailed data for this problem are as follows: size of tank = 6 m × 6 m × 2.5 m, height of separator wall 
(Hs) = 2 m, modulus of elasticity = 200 GPa, Poison’s ratio = 0.3, depth of fluid (Hf) = 1.6 m, mass density of fluid = 1000 kg/m3, 
mass density of separator wall = 7800 kg/m3. 
 

The study is carried out for three different position of separator wall (L) (Fig. 6): 3.2 m, 1.6 m and 0.8 m. The thickness of the 
separator wall also is varied from 25 mm to 100 mm for each case. Here the flexible separator wall and fluid are discretized by 2 × 
10 (i.e., Nh = 2 and Nv = 10)  and 10 ×8 (i.e., Nh = 10 and Nv = 8) respectively. Some rfeld boundary condition is adopted at the 
rigid wall boundary. A sinusoidal acceleration of frequency 20 rad/sec and 10 m/sec2 amplitude is applied on the structure.  
 

Tip displacement of separator wall, hydrodynamic pressure at point A and the CPU time for different cases are listed in Table 
3.Displacements at the tip of the separator wall from both the methods are almost same for different values of thickness and 
decreases with the increase of thickness of separator wall like previous example. Comparison of hydrodynamic pressure and CPU 
time shows a similar trained as obtained in Example 1. 
 
 

From Table 3, it is also observed that CPU time for indirect iterative approach depends on truncation length and thickness of the 
separator wall. The computation time becomes higher in case of indirect iterative approach compare to that in direct coupled 
approach. Thus, the efficiency of the indirect approach depends on the thickness of separator wall as well as its position inside the 
tank. 

 
 

Fig. 6. Geometry of water tank and separator wall 
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Table 3. Comparison of results between two different approaches for flexible separator wall 
 

L/Hf Thickness of structure                
(mm) 

Horizontal displacementat tip of the structure                                      
(mm) 

Hydrodynamic pressure at point - A                                    
(N/m2) 

Time                                                                                            
(sec) 

  Direct coupling Indirect coupling Direct coupling Indirect coupling Direct 
coupling 

Indirect 
coupling 

2 25 15.0 15.0 1154 1166 22 36 
50 9.8 9.8 1188 1200 22 30 
75 3.6 3.6 1194 1224 22 24 

100 1.9 1.9 1216 1222 22 21 
1 25 15.0 15.0 1132 1173 22 40 

50 9.0 9.0 1176 1198 22 34 
75 3.6 3.6 1189 1203 22 28 

100 1.9 1.9 1201 1218 22 24 
0.5 25 17.0 17.4 1824 1843 22 48 

50 11.0 11.5 1885 1914 22 41 
75 3.8 3.8 1933 1950 22 37 

100 2.1 2.1 1998 2106 22 33 

 

Example 3 
 
A dam-reservoir system has been analyzed using both the method as discussed earlier for a comparison. For this study the 
following properties of dam-reservoir system are considered (Fig.2): dam: height (Hd) = 103 m, width at top (td) =  14.8 m, width 
at base  (Ld) = 70, mass density (ρd) = 24000 kg/m3, Poisson’s ratio (ν) = 0.2, and structural damping = 5%; Reservoir: depth  
(Hf)= 103 m, acoustic speed (c) = 1440 m/sec, mass density (ρd) = 1000 kg/m3. The infinite reservoir is truncated at a distance (Lt) 
309 m from the face the structure and Maity and Bhattacharyya (23) boundary condition is implemented at the truncation surface. 
The Koyna Earth quake acceleration is considered as the external excitation.  Here, the dam and fluid domain are discretized by 4 
× 10 (Nh = 4 and Nv = 12) and 12 ×10 (Nh = 12 and Nv = 10) respectively. The responses of dam-reservoir system are evaluated for 
three different values of modulus of elasticity of concrete: 3.5 × 109 N/m2, 3.5 × 1010 N/m2 and 3.5 × 1011 N/m2. Variations of 
hydrodynamic pressure at heel of the dam are obtained from these methods and are shown in Fig.7. From these graphical results it 
is clear that the hydrodynamic pressure obtained from direct coupling and indirect coupling are almost similar to each other. 
Similar trained are also observed for tip displacement of the dam (Fig. 8).The CPU time for analyzing the dam-reservoir system 
using direct and indirect coupling are listed in Table 4.The CPU time using indirect coupling is comparatively larger when the 
magnitude of modulus of elasticity is relatively less. However, for direct coupling, CPU times for different modulus of elasticity 
are equal and are less than that obtained from indirect coupling. Thus, it may be concluded that the CPU time required for analysis 
of dam-reservoir system under seismic excitation using direct coupling is comparatively less.   

 
Fig. 7. Hydrodynamic pressure at the heel of the dam for E = 3.5 × 109 N/m2 

 

 
Fig. 10. Horizontal displacement of dam at top for E = 3.5 × 109 N/m2 

 

Table 4. CPU time for analysis of dam-reservoir system using two different methods 
 

Modulus of elasticity               (N/m2) CPU time (sec) 
 Direct coupling Indirect coupling 
3.5 × 109 104 513 
3.5 × 1010 104 326 
3.5 × 1011 104 253 
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Conclusion 
 
This paper presents two methods of analysis for fluid-structure interaction problems and compares their efficiency in terms of 
computational time and accuracy. In direct coupled approach the fluid and structure are coupled together and solved as one system 
while in indirect iterative method, the fluid and structure are solved as two separate systems and their interaction effects are 
enforced at the interface by an iterative manner. The responses of fluid-structure system are almost same for both the approach. 
The results from various numerical exercise shows that both the methods have certain advantages as well as certain drawbacks. 
The CPU time required to analyze a fluid-structure coupled system by direct method will be same irrespective of the degree of 
structural flexibility if the matrix size remains unchanged. However, a wide variation of CPU time is noticedto solve the similar 
problem for different degree of structural flexibility having same matrix size. This is because of the number of iteration required to 
converge the results at a particular time instant. It is observed that the number of iteration increases if the structure becomes more 
flexible. In case of flexible separator wall in water tank, the efficiency of this method not only depends on the thickness of 
separator wall but also its position from the tank wall. From the numerical exercise, it is noticed that indirect iterative method 
takes less computational time when the structure is relatively less flexible and therefore this method will be suitable to use. If the 
structural flexibility is high, then the direct coupled approach will be effective for the analysis. 
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