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 ARTICLE INFO    ABSTRACT 
 

 

Multi-rate asynchronous sub-Nyquist sampling (MASS) followed by a two stage sensing scheme for 
cognitive radios where energy detection is used in the first stage and cyclostationary detection in the 
second stage is proposed. The detection parameters in both the stages are used s to maximize 
Probability of detection and to minimize the probability of false alarm. Compared to previous 
approaches, two-stage MASS offers lower sampling rate, robust against lack of time synchronization, 
more accuracy and is more robust to fading environments. Also it is an attractive approach for cognitive 
radio networks. 
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INTRODUCTION 
 

The economical problem with fixed spectrum assignment 
policy has the suboptimal use of spectrum resource leading to 
overutilization in some bands and under utilization in others 
[2-4].This observation has lead to the recent spectrum reforms 
by the U.S. Federal Communication Commission (FCC). The 
Dynamic Spectrum Access (DSA) for enhanced spectrum 
utilization for adaptive networks is achieved via the CR[5,6]. 
CR is an emerging wireless communication technology aims at 
using DSA to allow the unused, licensed TV frequency 
spectrum to be used by unlicensed users on a non-interfering 
basis[7,10]. Cognitive radio (CR) is one of the promising 
solutions for addressing this spectral under-utilization problem 
[1]. In [8], Y.-C. Liang, K.-C et al. provided systematic 
overview of CR networking at the physical and MAC layers. 
In [9], S. Chaudhari et al. introduced computationally efficient 
signal system schemes for multicarrier based primary user 
signal. In [12] H. Sun et al. exposed a point that CR with a 
broader spectral awareness could potentially explain more 
spectral opportunities and achieve greater capacity. In [13] Z. 
Tian et al. Wavelet based detection and in [14] Z. Quan S. 
multiband joint detection was specified for sensing wideband 
spectrum. The addition of [13] is that the flexibility in 
adapting to a dynamic wide band spectrum. The advantage  is 
that it performs well when applied to practical conditions. In 
[11] E. Axell et al. defined the concept of CR to explain the 
underutilized spectral resources 
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of reusing unused spectrum in an opportunistic manner and 
creates awareness about the existence of PU in a given 
geographical area. In [16] B. Farhang et al.proposed  a filter 
band method and in [17] D. Donoho, and in [18] E. Candes et 
al. proposed compressive signal reconstruction from in 
complete to implement wide band SS. Also in [19-21] and in 
[17-24] and in  [23] the authors  developed  a cooperative 
approach to wideband SS using compressive sampling 
mechanism. In [25] H. Sun et al. defined the approximation of 
the average probability of detection over a slow fading 
channel. All the above mentioned techniques (samples the 
transmitted signal at operation) use sub Nyquist sampling 
rates. In this paper we develop a new combined two-stage 
MASS applied to wideband spectrum sensing. The proposed 
combined MASS differs from [28] in two ways. First in [28], 
after spectral reconstruction of compressive sampling only the 
traditional energy detection technique is used. But in this 
proposed method detection is accomplished by both energy 
detection and cyclostationary detection. Second, accuracy in 
sensing the spectrum is measured in terms of FFT size and 
down sampling factor. Hence, combined MASS or two-stage 
MASS can be used interchangeably. The proposed two stage 
MASS system has superior compression capability compared 
with the Nyquist sampling system. Compared with existing 
wideband spectrum sensing approaches ,the new combined 
two-stage MASS has lower implementation complexity, 
higher energy efficiency, better data compression capability, 
show good accuracy and is more applicable to CR networks. 
The rest of the paper is organized as follows. We briefly 
introduce the CS-based sensing scheme in Section II. We then 
propose the MASS system in Section III. Simulation results  
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are presented in Section IV, followed by conclusions in 
Section V. 
 
Problem Statement 
 
The assumptions used in this paper are 1)all CRs keep quiet 
during the spectrum sensing interval as enforced by protocols, 
e.g., at the medium access control (MAC) layer. Therefore, the 
observed signal at a CR arises only from PUs and background 

noise. 2) The continuous time signal )(txc is received at a 

CR, and the frequency range of )(txc  is )(~0 HzW . The 

signal )(txc  is sampled at the sampling rate )(Hzf s  for an 

observation timeT .The discrete Fourier transform (DFT) 

spectrum of it can be calculated by ,xFX


 where F  

denotes an N -by- N DFT matrix   If Shannon-Nyquist 
sampling theorem is followed, the sampling rate needs to be at 

least twice the bandwidth of the signal, i.e., Wf s 2  which 

results in excessive memory requirements and prohibitive 
energy costs. To overcome these disadvantages the researchers 
have to search for technologies to reduce the sampling rate 

sf while maintaining W by using CS theory. First stage of 

spectrum sensing approach is spectral domain energy 
detection. As shown in Fig. 1, this approach extracts the 

reconstructed spectrum X


in the frequency range of interest, 

e.g., f , and then calculates the signal energy in the spectral 

domain. The output energy is compared with a detection 

threshold (denoted by ᵞ) to decide whether the corresponding 
frequency band is occupied or not, i.e., choosing between 

hypotheses 1H (presence of PUs) and 0H (absence of PUs). 

In the second stage of cyclostationary detection the FFT of the 
received signal is used to decide the presence (H1) or absence 
(H1) of Pus. In this paper, we will present a novel system, i.e., 
two-stage MASS, to sample the signal using sub-Nyquist 
sampling techniques, while enabling the detection to be more 
accurate even at low SNR with two-stage detection. 
 
System and Signal Model 
 
Suppose that a CR has v  sub-Nyquist sampling branches as 
shown in Fig. 2.The spectrum of interest is taken from the 

output of wideband filter with bandwidth W.  At the i -th 
branch, the low-rate sampler samples the received signal at the 

sub-Nyquist rate )(Hzfi . In the observation time T  

(second), the numbers of samples in these v sampling branches  

 
 
 
 
 
 
 
 
 
 
 
 
 

are
vMMM ,,, 21  , respectively where ]),1[( viTfM ii  . 

In addition, vMMM ,,, 21  are chosen to be different 

prime numbers that are of the order of N ,i.e., 

)(~ NM i  , by controlling the sampling rate 

]),1[( vif i  . The DFT spectra are used to reconstruct the 

wideband spectrum.  Suppose that the received signal )(txc  is 

of finite support and absolutely summable. Using the sub-

Nyquist rate Wfi 2 , we obtain the sampled 

signal     1,,0,][  iM
mT

cf
m

ci Mmxxmy
ii

 . The 

DFT spectrum of iy


 is then calculated by isi yFY


 , where 

sF denotes the iM -by- iM  DFT matrix. The DFT spectrum 

of iy


 is related to the continuous-time Fourier transform 

of )(txc  by  

 

)()( lfifXcfifYi
t

 




                                                (1) 

 

Where 




 dtetxfX tfj
cc

2)()(  is the Fourier transform 

of )(txc  

 

Furthermore, if )(txc is sampled at or above the Nyquist rate, 

i.e., Wf T
N

s 2 , the sampled signal can be  

 

written as .1,,1,0),()(][  Nnxxnx
N
nT

cf
n

c s
  The 

spectrum of x


 will be related to the continuous-time   Fourier 

transform of )(txc  by 





l scs lffXffX )()( . As 

the signal )(txc  is band-limited to W  and the sampling 

rate Wf s 2 , there will be no spectral aliasing phenomena 

in )( fX ; thus, we can rewrite this relationship 

by  22 ,),()( WW
cs ffXffX  . Because )( fX  has all 

information in  22 , WW , we assume that )( fX is zero 

everywhere except  
22

,WWf  . Substituting  

)()( fXffX cs into, we can obtain. 

 
 

Fig.1. Diagram of CS-based spectrum sensing when using the spectral domain energy detection approach 
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Where  a is the floor function that gives the largest integer 

not greater than a, and  n  denotes the Dirac delta function 

that is zero everywhere except at the origin, where it is one. In 
matrix form, we write 
 

X
N

M
Y i

i
i


 ,                                                                 (5) 

 

Where the elements of )( NMR i
NM

i
i  
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Multi-Rate Asynchronous Sub-Nyquist Sampling 
 
Due to the sub-Nyquist sampling in each sampling branch, we 
have to consider the effects of spectral aliasing. Even then, 

when the spectral sparsity Nk  and the sampling rate 

satisfy )(~ NOM i , the probability of signal overlap is 

very small [28]. In such case, consider two cases: no signal at 
a particular value m  and one signal at m . For a signal to be 
non- overlapped, the following equation has to be satisfied: 
 

X
N

M
X

N

M
Y i

i
i

i
i


 ,                                         (6) 

 

The elements of i  are either zeros or ones, hence each 

frequency bin of iY


 has no signal overlap from X


. 
 

The proposed system doesn’t require exact synchronization 
between sub-Nyquist samplers. The time offset between 
sampling branches need to be sufficiently small. Because 
energy detection is used in the first stage for spectrum 
recovery, there is an advantage of applying the proposed 
technique to co-operative CR networks with same spectral 
environments. For successful spectrum reconstruction Mutual 
coherence [17]  to be minimum 
 

  zl
Nzl

 ˆ,ˆmax
,1

                                                        (7) 

 

Mutual coherence of the measurement matrix  at v samples 
is given by, 

 
 

Fig.2. Schematic Illustration of the Two-stage Multirate Asynchronous sub-Nyquist sampling system in one CR node 
 

 
 

Fig.3. Diagram of CS-based spectrum sensing when using the cyclostationary detection approach 
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v
zl

zl

1ˆ,ˆmax 


 ,                                                 (8) 

 

When 12
1
 k , the k -sparse signal can be successfully 

recovered. Thus, we know that if 12
11
 kv , i.e., 

12  kv , the spectral magnitude X


can be exactly 

reconstructed. The number of sampling branches 

12  kv in order to reconstruct the spectrum.  Sensing error 
is also been calculated as the ratio of addition of difference 
between the estimated spectrum and the actual spectrum in 
both upper and lower bounds and the difference between the 
upper and lower bands. 
 

 
Simulation Results 
 
It is assumed  that there are v sub Nyquist sampling branches 

used for sampling the received signal )(txc at various sub 

Nyquist rates. In the 
thi  sampling branch the received signal 

denoted as )(txc is sampled at sub Nyquist rate if , and is 

deserved for time T. )(txc  is denoted as, 

 

         tztftBcBEtx l

N

l
lllc

b




2cos*sin*
1

              (9) 

 

Where x

xxc 
 )sin()(sin  ,   denotes a random time offset 

between sampling branches, and )(tz  is unit additive white 

Gaussian noise (AWGN). The received power lE don’t 

change for the entire T but vary randomly from branch to 

branch. We assume there are 30bN  non-overlapping sub 

bands, whose bandwidths MHzBl 5~5.0 , with carrier 

frequencies GHzfl 20~0 . Here fix u=23 sampling 

branches with different sub Nyquist rates )(~ NOM i . 

After reconstruction using (7) the presence or absence of user 
is decided by combined energy detection and cyclostationary 
detection. Fig.4. depicts the Receiver Operating characteristic 
curve for Probability of detection at various SNR for fixed 
bandwidth factors. Fig.5. shows the effect of sparsity level k  

and the compression ratio 






  

v

M

N
M

v

i i
M 1  on the detection 

performance.  
 
From the fig it is inferred that lower the sparsity level better is 
the detection performance. Also fig depicts that the higher the 
compression ratio lower is the probability of false alarm and 
higher is the probability of detection. Fig.6. shows the 
comparison of MSE reconstruction of the spectrum for the 
compression ratio below 0.25 the proposed combined MASS 
can achieve smaller MSE when compared to both CS based 
approach and the future rate of innovation approach. Fig.7. 
shows the effect of lack of synchronization between sampling 
branches, time effects considered here is the range 0~0.8  s  

 
 

Fig.4. Receiver Operating characteristic curve for Probability of 
detection at various SNR for fixed bandwidth factors 

 

 
 

Fig 5. Shows the influence of sparsity level k and the compression 
ratio on the detection performance of Combined MASS with 

average SNR=10Db 
 

 
 

Fig.6. Comparison between the proposed system and the existing 
approaches in terms of MSE reconstruction of the spectrum and 

the compression ratio 
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Fig.7. Comparison of spectrum recovery performance of 
synchronous samplers and asynchronous samplers with Nb=40 

and Nb=50 over AWGN channels with average SNR=10dB 
 

 
 

Fig.8. The detection performance of combined MASS over 
AWGN and Rayleigh fading channels with the number of 

subbands Nb=30 
 

 
 

Fig.9. The detection performance of combined MASS as a 
function of  SNR  at different sensing times 80us and 160 us when 

the downsampling factor L=20 

and the observation time is  s. From the figure it is inferred 

that the both the asynchronous and synchronous samplers 
perform similarly when detection is considered. Fig illustrates 
that as the number of sampling branches increases better 
spectrum sensing performance can be achieved. Because with 
more sampling branches a higher accuracy in spectrum 
recovery can be obtained. Fig.8 shows the detection 
performance of combined MASS over AWGN and Rayleigh 
fading channels. When signal to noise ratio is zero decibels 
(db) detection performance of combined MASS over fading 
channels, is roughly as same as non-fading AWGN channels. 
This is because the strength of the signal is mostly masked by 
noise.  Also, the detection performance of combined MASS 
over AWGN channel is better than that of fading channel 
when SNR=5db. Fig. also shows that the performance of 
combined MASS over Rayleigh  fading channel is poorer in 
comparison to the case of AWGN channel.  
 

We provide a simulation setup for calculating sensing time by 
varying the down sampling factor. We assume that there are 
M=5 sub bands in the frequency range (0, fmax) = [0, 1.0]GHz. 
hence the nyquist rate is fmax =1/To=1GHz.the bandwidth of 
each sub band are 5MHz.The down sampling factor is chosen 
as L=20,corresponding to the Sub-Nyquist rate of 
1/LTo=75MHz(>Bmax=5MHz). FFT size considered here is 
N=12000 and 24000 corresponding to the sensing time 
Z=NLTo =80us and 160 us. Fig.9.depicts the detection 
performance of combined MASS as a function of  SNR  at 
different sensing times 80us and 160 us when the 
downsampling factor L=20.From the figure it is inferred that 
longer sensing time leads to improved sensing accuracy hence 
reduced sensing error. A similar system possessing the same 
performance is CS based system. But the disadvantage of CS 
based approach is that it requires pseudo random sequence 
generator as compression devices at the each CR node. Also 
lack of  synchronization leads to false spectral recovery. But 
for two-stage MASS no separate device is required for 
generating measurement matrix and the synchronization 
requirements also relaxed. The spectral recovery and 
robustness against fading is improved in combined MASS 
even at very low SNR with slight increase in implementation 
complexity which is contributed by cyclostationary detector. 
 

Conclusion 
 

In this paper, we have proposed a two-stage wide band SS 
system i.e. two stage MASS. The basic procedure of sampling 
the wide band SS at different sub Nyquist rates by parallel low 
rate sampler is accomplished followed by spectrum recovery 
and detection by energy detection and cyclostationary 
detection. The prior knowledge needed is an upper bound on 
the number of sampling branches and the frequency range of 
interest CS based spectrum recovery is followed. Simulation 
results have shown that improved MASS has outstanding 
compressive capability compared with Nyquist sampling 
system. Compared with other available sub Nyquist sampling 
system of CS based system the two-stage MASS has been seen 
to be against lack of synchronization and have superior 
performance in AWGN and Rayleigh fading scenarios. 
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