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We introduce a new simple method with using delta function interactions to compute the exact momentum 
representation wave function for Hydrogen atom as well as the Hydrogen molecule. Finally, we use Maple 
to plot the curves and discuss about the results with some interesting points, which we find in the limits.
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INTRODUCTION 
 
The exact computational of the momentum space 
wave functions for bound states of quantum 
mechanical systems is usually not possible, and 
one must obtain the momentum representation in 
terms of an integral equation. A system of 
particular is the Hydrogen atom. For this system 
the momentum space wave function for the bound 
states in three dimensions have been obtained [1]. 
However, they are quite complicated. In the paper 
the bound state momentum space wave function of 
the one dimensional Hydrogen atom with  
function interaction is obtained. The exact 
momentum representation function for one the one 
dimensional Hydrogen molecule ion with  
function interactions is also obtained. Because 
these calculations can be carried out quit simply 
this problem, may be useful in discussing the 
momentum representation in quantum mechanics 
course. 
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Hydrogen Atom
 
The Schordinger equation for the one dimensional 
Hydrogen atom with 
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equation (1) has a bound solution
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this state is 
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the momentum space wave function maybe 
o
equation (1). One obtains
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We introduce a new simple method with using delta function interactions to compute the exact momentum 
representation wave function for Hydrogen atom as well as the Hydrogen molecule. Finally, we use Maple R.8 
to plot the curves and discuss about the results with some interesting points, which we find in the limits. 

Hydrogen Atom 
 
The Schordinger equation for the one dimensional 
Hydrogen atom with  function is given by [2,3] 
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equation (1) has a bound solution 

 

   0
21
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where 
22

0 mea  . The energy eigen value for 

this state is  
 

24
0 2meEE                                       (3) 

 
the momentum space wave function maybe 
obtained most easily by Fourier transforming 
equation (1). One obtains 
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this result was obtained by Lieber  using a different 

method. Plots of  
2

x as a function of x and 

 
2

p as a function of p are shown in fig. 1, the 

widths of distribution for x and p, yield the 
uncertainly relation. Using equation 2, 
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using equation (1), 
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thus 

 

  22 px           ………………………. (8) 

 
which is greater the minimum value possible 

(Gaussian wave function) by a factor of  2 . 
 

III. Hydrogen Molecular Ion 

 
The Schordinger equation for one-dimensional 
Hydrogen molecular ion with d function interaction 
is given by  
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where the nuclei are located at the position 

ax  . Equation (9) has one symmetric bound 
state solution , 
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Fig.1. Variation probability amplitudes in position 
and momentum spaces versus x and p 
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Fig. 2. Variation probability amplitudes in position 
and momentum spaces versus x and p                     

(assumed a= 0a & =2) 
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Fig.3. Variation uncertainty in position, momentum 
and uncertainty relation versus  when R=2a 
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Fig.4. Variation uncertainty in position, momentum 
and uncertainty relation versus  when R=2a 
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Fig.1 Variation probability amplitudes in 

position and 
 momentum spaces versus x and p 

 

 axAx  cosh)(              ax                  (10-a) 

)exp( axB              ax                           (10-b) 

with       
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exp212
2121
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     cosh212
21

0


 aB , where  

   tanh12 0  aa . The energy 

eigenvalue for this state is  
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the momentum space wave function is obtained 
most easily by Fourier transforming   
 
equation (9). One obtains 
 
                


dxxaxaxipxepEmp   exp22

2122

 

    paae cos)(2
212  

                                  (12) 

                                            



 
thus



                                                      
 

plots of 
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figure 2. One my again compute the widths of the 
distribution for 
relation. Using equation (10),



   

 
using equation (9),
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where 

between the nuclei which is obtained by taking the 
square root of the pr
(15). The uncertainty in the values of 
the uncertainty relation are plotted as a function of 
R
in the position increases without limit as the 
distance between the nu
uncertainty in the momentum decreases by factor 

of 2. In the limit that 
from equation (14), is decreased by factor of 2 
compared to that obtained from equation (16), and 
is 


as obtained from equation (15), is increased by a 
factor of 2 compared to that obtained from 
equation (7). Hence, the uncertainty relation, given 
in 
     
the Hydrogen molecule ion also has negative 
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plots of     2
0 x  as a function of x and 

    2
0 p  as a function of p are shown in 

figure 2. One my again compute the widths of the 
distribution for x and p to evaluate the uncertainty 
relation. Using equation (10), 
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using equation (9), 
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thus 

 

  )(2 Rfpx            ……………………..(16) 

where )(Rf is a function of the distance, R=2a, 

between the nuclei which is obtained by taking the 
square root of the product of equations (14) and 
(15). The uncertainty in the values of x and p and 
the uncertainty relation are plotted as a function of 
R in fig. 3. As may be seen in fig.3 the uncertainty 
in the position increases without limit as the 
distance between the nuclei increase, but the 
uncertainty in the momentum decreases by factor 

of 2. In the limit that 0R , x , as obtained 
from equation (14), is decreased by factor of 2 
compared to that obtained from equation (16), and 
is the same as for one dimensional helium atom 

 20aa  . The uncertainty in the momentum, 

as obtained from equation (15), is increased by a 
factor of 2 compared to that obtained from 
equation (7). Hence, the uncertainty relation, given 
in equation (8), remains unchanged. 
     It is of interest to that the antisymmetric state of 
the Hydrogen molecule ion also has negative 



energy for 20aa  . However, the energy E(R) 

is always greater than 0)( EE  , the energy of 

a Hydrogen atom and a Hydrogen atom ion. The 
antisymmetric solution of equation (9) is, 
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 aB , where now 

   coth12 0  aa . The momentum 

space wave function obtained by Fourier 
transforming equation (9) is, 
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the widths of distribution are  
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thus 
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where g(R) is again a function of R obtained from 
equation 19 and 20. The uncertainty in the values 
of x and p, and the uncertainty relation plotted as a 
function of R in fig.5. For the negative parity state 

the energy is negative only for 20aa  , 1  

and 0 . Then  220ax , 

022 0
21  ap  and 

   21)0(2  gpx .  The 

momentum representation of the one dimensional 
Hydrogen atom with a  function interaction is a 
useful example to discuss in a quantum mechanics 
course because of the ease of carrying out 
computations. We have also shown that one easily 
obtain the momentum space wave function for one-
dimensional Hydrogen molecule ion with  
function interactions. 
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